Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New rotors could help develop nanoscale generators

The research focused on rotating magnetic fields which play an important part in machines such as electric motors
The research focused on rotating magnetic fields which play an important part in machines such as electric motors

Abstract:
Scientists at the University of Liverpool have developed a molecular structure that could help create current-generating machines at the nanoscale.

New rotors could help develop nanoscale generators

Liverpool, UK | Posted on June 1st, 2009

In collaboration with the Chinese Academy of Sciences in Beijing, scientists have investigated the rotation of molecules on a fixed surface to understand how they may help in the development of future rotor-based machinery at nanoscale level.

The research focused on rotating magnetic fields, which play an important part in machines, such as electric motors and generators. The difficulty for technology at the atomic scale is to replicate this property with rotors the size of small molecules. A number of rotating molecules have already been identified, but so far molecules have not been used to create rotating magnetic fields.

The researchers used a gold metal surface to anchor phthalocyanine molecules, which have a metallic centre, in a large array. The anchor point - a single gold atom on top of the gold surface, and attached to a nitrogen atom of the molecule - allowed the molecules to rotate just off-centre.

Professor Werner Hofer, from the University's School of Chemistry, explains: "The difficulty in creating molecular rotors is that molecules need a fixed anchor point and will often react with the surface you want to fix them to. A gold surface interacts very weakly with molecules; it moreover provides regular anchor points to attach single molecules, which then line up in large and well ordered arrays."

"The centre atoms, which are metallic, spin around the gold atoms creating an off-axis rotation. The beauty of phthalocyanine is that the centre can be functionalised with any metal atom; the research could then lead to the development of rotating magnetic fields at a very small scale."

Scientists believe that this could be the first step towards the fabrication of machines for the generation of currents at small scale.

The research is published in Physical Review letters.

####

About University of Liverpool
The University of Liverpool is a world leading research university. Its history dates back to 1881 and the establishment of University College Liverpool. Today, the University continues to expand its teaching and research with centres of excellence in areas such as medicine, engineering and veterinary science. It is a member of the Russell Group, the association of the UK's top 20 research-led universities.

For more information, please click here

Contacts:
Kate Spark
Media Relations Manager
Phone: work +44 (0) 151 794 2247
Out of hours (cell+44 (0) 7970 247391)


Samantha Martin
Senior Press Officer
Phone: work +44 (0) 151 794 2248
Out of hours (cell+44 (0) 7973 247836)

Copyright © University of Liverpool

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project