Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > So Long Aspirin, Hello Silver

May 30th, 2009

So Long Aspirin, Hello Silver

Abstract:
Millions of people around the world are prone to dangerous blood clots. Now researchers have had early success with a new way to prevent them--and the strokes, heart attacks, and pulmonary embolisms they cause. Nano-sized particles of silver can stop sticky blood cells called platelets from clinging together in laboratory strains of mice, the team reports.

Platelets help the body stop bleeding. But if they clump together too much, they can also form clots within the bloodstream. A deep-vein thrombosis, for example, can form in the lower leg and block blood flow. If the clot is not broken up quickly using injections of powerful anticoagulants, it can break loose and cut blood supply to the heart or brain, with fatal consequences. As a result, the nearly 500 million sufferers worldwide of clotting-related disorders--including this reporter--must take daily doses of anticoagulants, which carry dangers of their own, such as spontaneous and uncontrollable internal bleeding.

The key, then, is to find an agent that prevents platelets from sticking together too much without impeding their ability to shunt a bleed. Recent research on silver nanoparticles--tiny grains of the metal less than 1/50,000th the width of a human hair--indicated that they might do the trick. So a biomedical team from Banaras Hindu University in Varanasi, India, began exploring their potential, in cooperation with materials science colleagues at the university and at the International Advanced Research Centre for Powder Metallurgy and New Materials in Balapur, India.

Source:
sciencemag.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project