Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > So Long Aspirin, Hello Silver

May 30th, 2009

So Long Aspirin, Hello Silver

Abstract:
Millions of people around the world are prone to dangerous blood clots. Now researchers have had early success with a new way to prevent them--and the strokes, heart attacks, and pulmonary embolisms they cause. Nano-sized particles of silver can stop sticky blood cells called platelets from clinging together in laboratory strains of mice, the team reports.

Platelets help the body stop bleeding. But if they clump together too much, they can also form clots within the bloodstream. A deep-vein thrombosis, for example, can form in the lower leg and block blood flow. If the clot is not broken up quickly using injections of powerful anticoagulants, it can break loose and cut blood supply to the heart or brain, with fatal consequences. As a result, the nearly 500 million sufferers worldwide of clotting-related disorders--including this reporter--must take daily doses of anticoagulants, which carry dangers of their own, such as spontaneous and uncontrollable internal bleeding.

The key, then, is to find an agent that prevents platelets from sticking together too much without impeding their ability to shunt a bleed. Recent research on silver nanoparticles--tiny grains of the metal less than 1/50,000th the width of a human hair--indicated that they might do the trick. So a biomedical team from Banaras Hindu University in Varanasi, India, began exploring their potential, in cooperation with materials science colleagues at the university and at the International Advanced Research Centre for Powder Metallurgy and New Materials in Balapur, India.

Source:
sciencemag.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project