Home > Press > Researchers to create next gen discs
Abstract:
Futuristic discs with a storage capacity 2,000 times that of current DVDs could be just around the corner, thanks to new research from Swinburne University of Technology.
For the first time researchers from the university's Centre for Micro-Photonics have demonstrated how nanotechnology can enable the creation of ‘five dimensional' discs with huge storage capacities.
The research, carried out by Mr Peter Zijlstra, Dr James Chon and Professor Min Gu was published today in the scientific journal Nature.
The Nature article describes how the researchers were able to use nanoscopic particles to exponentially increase the amount of information contained on a single disc.
"We were able to show how nanostructured material can be incorporated onto a disc in order to increase data capacity, without increasing the physical size of the disc," Gu said.
Discs currently have three spatial dimensions, but using nanoparticles the Swinburne researchers were able to introduce a spectral - or colour - dimension as well as a polarisation dimension.
"These extra dimensions are the key to creating ultra-high capacity discs," Gu said.
To create the ‘colour dimension' the researchers inserted gold nanorods onto a disc's surface. Because nanoparticles react to light according to their shape, this allowed the researchers to record information in a range of different colour wavelengths on the same physical disc location.
This is a major improvement on current DVDs that are recorded in a single colour wavelength using a laser.
The researchers were also able to introduce an extra dimension onto the disc using polarisation. When they projected light waves onto the disc, the direction of the electric field contained within them aligned with the gold nanorods. This allowed the researchers to record different layers of information at different angles.
"The polarisation can be rotated 360 degrees," Chon said. "So for example, we were able to record at zero degree polarisation. Then on top of that, we were able to record another layer of information at 90 degrees polarisation, without them interfering with each other."
Some issues, such as the speed at which the discs can be written on, are yet to be resolved. However the researchers - who have already signed an agreement with Samsung - are confident the discs will be commercially available within 5 - 10 years.
The discs are likely to have immediate applications in a range of fields. They would be valuable for storing extremely large medical files such as MRIs and could also provide a boon in the financial, military and security arenas.
The researchers' ground breaking achievements would not have been possible without the long time support of the Australian Research Council.
####
For more information, please click here
Contacts:
Media Contact:
Crystal Ladiges
+61 3 9214 5064
 
Copyright © Swinburne University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Memory Technology
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||