Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers to create next gen discs

Abstract:
Futuristic discs with a storage capacity 2,000 times that of current DVDs could be just around the corner, thanks to new research from Swinburne University of Technology.

For the first time researchers from the university's Centre for Micro-Photonics have demonstrated how nanotechnology can enable the creation of ‘five dimensional' discs with huge storage capacities.

Researchers to create next gen discs

Melbourne, Australia | Posted on May 20th, 2009

The research, carried out by Mr Peter Zijlstra, Dr James Chon and Professor Min Gu was published today in the scientific journal Nature.

The Nature article describes how the researchers were able to use nanoscopic particles to exponentially increase the amount of information contained on a single disc.

"We were able to show how nanostructured material can be incorporated onto a disc in order to increase data capacity, without increasing the physical size of the disc," Gu said.

Discs currently have three spatial dimensions, but using nanoparticles the Swinburne researchers were able to introduce a spectral - or colour - dimension as well as a polarisation dimension.

"These extra dimensions are the key to creating ultra-high capacity discs," Gu said.

To create the ‘colour dimension' the researchers inserted gold nanorods onto a disc's surface. Because nanoparticles react to light according to their shape, this allowed the researchers to record information in a range of different colour wavelengths on the same physical disc location.

This is a major improvement on current DVDs that are recorded in a single colour wavelength using a laser.

The researchers were also able to introduce an extra dimension onto the disc using polarisation. When they projected light waves onto the disc, the direction of the electric field contained within them aligned with the gold nanorods. This allowed the researchers to record different layers of information at different angles.

"The polarisation can be rotated 360 degrees," Chon said. "So for example, we were able to record at zero degree polarisation. Then on top of that, we were able to record another layer of information at 90 degrees polarisation, without them interfering with each other."

Some issues, such as the speed at which the discs can be written on, are yet to be resolved. However the researchers - who have already signed an agreement with Samsung - are confident the discs will be commercially available within 5 - 10 years.

The discs are likely to have immediate applications in a range of fields. They would be valuable for storing extremely large medical files such as MRIs and could also provide a boon in the financial, military and security arenas.

The researchers' ground breaking achievements would not have been possible without the long time support of the Australian Research Council.

####

For more information, please click here

Contacts:
Media Contact:
Crystal Ladiges
+61 3 9214 5064

Copyright © Swinburne University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project