Home > News > 'Writing' Patterns on Carbon Nanotubes With Polymer Chains
May 19th, 2009
'Writing' Patterns on Carbon Nanotubes With Polymer Chains
Abstract:
Carbon nanotubes are at the center of the nanoelectronics research movement, with scientists making great progress toward getting nanotube-based electronic devices into the hands of consumers. But one area of carbon nanotube research where there has been considerably less success is creating repeating, regular patterns onto individual nanotubes, a task necessary for a key goal of nanoelectronics: patterning transistors directly onto nanotube surfaces.
Now, as reported in a recent edition of Nature Nanotechnology, a research group has successfully used polymers to create well defined patterns onto single-walled carbon nanotubes.
"Very few reports have address periodic patterning on nanotubes, and those studies that have been conducted resulted in patterns that were poorly repeating rather than nicely periodic and uniform," said the study's corresponding researcher, Christopher Li of Drexel University, to PhysOrg.com. "The success of our work appears to be in the polymer material we used."
Source:
physorg.com
Related Links |
Christopher Li Group at Drexel
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |