Home > News > How nanotech can meet the poor's water needs
May 11th, 2009
How nanotech can meet the poor's water needs
Abstract:
David Dickson: Nanotechnology holds huge potential for supplying clean water to the world's poor, but many challenges must be overcome to realise it.
When the economist Fritz Schumacher coined the phrase "small is beautiful" more than 30 years ago, he was hoping to promote "intermediate technologies" that focus on local techniques, knowledge and materials, rather than high-tech solutions to problems facing the world's poor.
Nowhere is the promise of nanotechnology stronger than in water treatment. Nanofiltration techniques and nanoparticles can reduce or eliminate contaminants in water and could help deliver a key Millennium Development Goal — halving the proportion of people without sustainable access to safe drinking water by the year 2015.
The challenges are many, and not just technical. Some relate to health and safety, and the need for appropriate regulations to defend both. And some are more political, for example the need to make basic technologies both accessible to and controllable by the communities that need them most. Like any new technology, community acceptance is essential if nanotechnology is to effectively work in villages across the developing world, where water problems are often the most acute.
But there are many reasons to be optimistic that we can overcome these challenges and, by doing so, that nanotechnology can pioneer a new paradigm for applying modern technology to development needs. Its current applications show how modern science and technology can be successfully blended with concern for human and environmental health on the one hand, and a commitment to community engagement in technological innovation on the other.
Source:
scidev.net
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Water
Taking salt out of the water equation October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |