Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > See the force: Mechanical stress leads to self-sensing in solid polymers

This shows progressive images of a mechanophore linked elastomer during tensile loading. After the polymer reaches a critical strain, a force-induced red color results from selective covalent bond cleavage in the mechanophore just prior to failure.

Credit: Beckman Institute ITG, Darren Stevenson and Alex Jerez
This shows progressive images of a mechanophore linked elastomer during tensile loading. After the polymer reaches a critical strain, a force-induced red color results from selective covalent bond cleavage in the mechanophore just prior to failure.

Credit: Beckman Institute ITG, Darren Stevenson and Alex Jerez

Abstract:
Parachute cords, climbing ropes, and smart coatings for bridges that change color when overstressed are several possible uses for force-sensitive polymers being developed by researchers at the University of Illinois.

See the force: Mechanical stress leads to self-sensing in solid polymers

Champaign, IL | Posted on May 6th, 2009

The polymers contain mechanically active molecules called mechanophores. When pushed or pulled with a certain force, specific chemical reactions are triggered in the mechanophores.

"This offers a new way to build function directly into synthetic materials," said Nancy Sottos, a Willett Professor of materials science and engineering at the U. of I. "And it opens the door to creating mechanophores that can perform different responsive functions, including self-sensing and self-reinforcing, when stressed."

In previous work, Sottos and collaborators showed they could use mechanical force to induce a reaction in mechanophore-linked polymers that were in solution. Now, as reported in the May 7 issue of the journal Nature, the researchers show they can perform a similar feat in a solid polymer.

Mechanically induced chemical activation (also known as mechanochemical transduction) enables an extraordinary range of physiological processes, including the senses of touch, hearing and balance, as well as growth and remodeling of tissue and bone.

Analogous to the responsive behavior of biological systems, the channeling of mechanical energy to selectively trigger a reaction that alters or enhances a material's properties is being harnessed by the U. of I. researchers.

In critical material systems, such as polymers used in aircraft components, self-sensing and self-reinforcing capabilities could be used to report damage and warn of potential component failure, slow the spread of damage to extend a material's lifetime, or even repair damage in early stages to avoid catastrophic failure.

"By coupling mechanical energy directly to structural response, the desired functionality could be precisely linked to the triggering stimulus," said Sottos, who also is affiliated with the university's Beckman Institute.

In their work, the researchers used molecules called spiropyrans, a promising class of molecular probes that serve as color-generating mechanophores, capable of vivid color changes when they undergo mechanochemical change. Normally colorless, the spiropyran used in the experiments turns red or purple when exposed to certain levels of mechanical stress.

"Mechanical stress induces a ring-opening reaction of the spiropyran that changes the color of the material," said Douglas Davis, a graduate research assistant and the paper's lead author. "The reaction is reversible, so we can repeat the opening and closing of the mechanophore."

"Spiropyrans can serve as molecular probes to aid in understanding the effects of stress and accumulated damage in polymeric materials, thereby providing an opportunity for assessment, modification and improvement prior to failure," Davis said.

To demonstrate the mechanochemical response, the researchers prepared two different mechanophore-linked polymers and subjected them to different levels of mechanical stress.

In one polymer, an elastomer, the material was stretched until it broke in two. A vivid color change in the polymer occurred just before it snapped.

The second polymer was formed into rigid beads several hundred microns in diameter. When the beads were squeezed, they changed from colorless to purple.

The color change that took place within both polymers could serve as a good indicator of how much stress a mechanical part or structural component made of the material had undergone.

"We've moved very seamlessly from chemistry to materials, and from materials we are now moving into engineering applications," Sottos said. "With a deeper understanding of mechanophore design rules and efficient chemical response pathways, we envision new classes of dynamically responsive polymers that locally remodel, reorganize or even regenerate via mechanical regulation."

In addition to Sottos and Davis, the paper's co-authors include materials science and engineering professor Paul Braun, chemistry professors Todd Martinez and Jeffrey Moore, and aerospace engineering professor Scott White, as well as members of their research groups.

The work was funded by the U.S. Army Research Office MURI program.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Nancy Sottos
217-333-1041

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project