Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanocolloids identify blood clots

May 1st, 2009

Nanocolloids identify blood clots

Abstract:
US and UK scientists have discovered a safer contrast agent for magnetic resonance imaging (MRI). The agent is an alternative to commonly used, but potentially harmful, gadolinium-based agents.

MRI uses paramagnetic metals (contrast agents) to produce high resolution, non-invasive images of the body's internal structure. It is particularly useful in cardiovascular research for visualising blood clots in arteries, which can cause heart attacks and strokes. Although scientists normally use gadolinium as the contrast agent, its recent association with a serious tissue disorder in patients with kidney failure has prompted the development of new, safer imaging agents.

Dipanjan Pan, at Washington University School of Medicine, St Louis, US, and colleagues stirred manganese oxide nanoparticles in a vegetable oil and surfactant mixture to form manganese oxide nanocolloids with phospholipid shells. They showed that the nanocolloids are highly sensitive to fibrin, a major component of blood clots, and so are effective contrast agents.

The colloids can be easily metabolised and excreted by the human body, explains Pan, unlike other manganese-based contrast agents, which are difficult to eliminate and create a hazardous tissue residue. 'Bigger metal crystals are not metabolised and they are typically too large to be excreted through the kidney or bile, presenting an issue for long-term safety. We incorporate tiny manganese oxides or organically soluble chelated manganese into a stable nanoparticle, which is constrained within the vasculature [blood vessels]. This inherent difference over non-excretable nanocrystals should greatly improve the prospects of safety and clinical translation.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project