Home > Press > World’s First Nanofluidic Device with Complex 3-D Surfaces Built
(A) Schematic of the NIST-Cornell nanofluidic device with complex 3-D surfaces. Each “step” of the “staircase” seen on the side marks a different depth within the chamber. The letter “E” shows the direction of the electric field used to move the nanoparticles through the device. The green balls are spheres with diameters of 100 nanometers whose size restricts them from moving into the shallower regions of the chamber. The coil in the deep end of the chamber (upper right corner) is a single DNA strand that elongates (upper left corner) in the shallow end.
(B) Photomicrograph showing fluorescently tagged spherical nanoparticles stopped at the 100-nanometer level of the chamber, the depth that corresponds to their diameter.
(C) Photomicrograph of a single DNA strand that is coiled in the deep end of chamber (box at far right) and elongated in the shallow end (box at far left). Larger boxes are closeups showing the fluorescently tagged strands.
Credit: NIST |
Abstract:
Researchers at the National Institute of Standards and Technology (NIST) and Cornell University have capitalized on a process for manufacturing integrated circuits at the nanometer (billionth of a meter) level to engineer the first-ever nanoscale fluidic device with complex three-dimensional surfaces. As described in a recent paper in the journal Nanotechnology,* the Lilliputian chamber is a prototype for future tools with custom-designed surfaces to manipulate and measure different types of nanoparticles in solution.
Among the potential applications are processing nanoscale materials for manufacturing products such as pharmaceuticals, sorting mixtures of nanoparticles for environmental health and safety investigations, and isolating and confining individual DNA strands for scientific study.
Nanofluidic devices are usually fabricated by etching tiny channels into a glass or silicon wafer with the same "lithographic" procedures used for making integrated circuits. To date, these flat rectangular channels have had simple surfaces with only a few depths. This limits their ability to separate mixtures of nanoparticles with different sizes or study the nanoscale behavior of biomolecules (such as DNA) in detail.
To solve the problem, the researcher team developed a lithographic process to fabricate complex 3-D surfaces. To demonstrate their method, they constructed a nanofluidic chamber with a "staircase" geometry etched into the floor. The "steps" in this staircase—each level giving the device a progressively increasing depth from 10 nanometers (about 6,000 times smaller than the width of a human hair) at the top to 620 nanometers at the bottom—are what give the device its ability to manipulate nanoparticles by size in the same way a coin sorter separates nickels, dimes and quarters.
In these novel experiments, the researchers tested their device with two different solutions: one containing 100-nanometer-diameter polystyrene spheres and the other containing 20-micrometer (millionth of a meter)-length DNA molecules from a virus. In each experiment, the researchers injected the solution into the chamber's deep end and then used electric fields to drive their sample across the device from deeper to shallower levels. Both the spheres and DNA strands were tagged with fluorescent dye so that their movements could be tracked with a microscope.
In the trials using rigid nanoparticles, size exclusion occurred when the region of the chamber where the channels were less than 100 nanometers in depth stayed free of the particles. In the viral DNA trials, the genetic material was coiled in the deeper channels and elongated when forced into the shallower ones. These results demonstrate the utility of the NIST-Cornell 3-D nanofluidic device to perform more complicated nanoscale operations.
Currently, the researchers are working to separate and measure mixtures of different-sized nanoparticles and investigate the behavior of DNA captured in a 3-D nanofluidic environment. For more information and images, see "NIST-Cornell Team Builds World's First Nanofluidic Device with Complex 3-D Surfaces."
* S.M. Stavis, E.A. Strychalski and M.Gaitan. Nanofluidic structures with complex three-dimensional surfaces. Nanotechnology Vol. 20, Issue 16 (online March 31, 2009; in print April 22, 2009).
####
About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.
For more information, please click here
Contacts:
Michael E. Newman
(301) 975-3025
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
“NIST-Cornell Team Builds World’s First Nanofluidic Device with Complex 3-D Surfaces.”
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||