Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Swarming Particles

Abstract:
Silver chloride microparticles act as light-driven micromotors that organize into swarms

Swarming Particles

Weinheim, Germany | Posted on April 8th, 2009

A swarm of tiny machines, speeding in concert through the bloodstream to repair an organ or deliver a drug to its target area, microrobots working together to construct a nanotechnological component—although it sounds like science fiction, it is a thoroughly realistic future scenario. Amazing progress has already been made in the production of autonomous nano- and micromotors, but the little machines have continued to lack in team spirit. To complete challenging tasks, the individual machines must communicate and cooperate with each other. Researchers led by Ayusman Sen at Pennsylvania State University (USA) have now introduced silver chloride microparticles that can "swarm" together, almost like living single-celled organisms. As reported in the journal Angewandte Chemie, irradiation with UV light causes the particles to give off "signal substances" that "attract" other particles.

Living cells and organisms are able to exchange information with each other to accomplish tasks as a team. Single-celled slime molds, for example, living in unfavorable conditions thus release a special substance. Neighboring slime molds follow the gradient of this signal substance and aggregate in the form of a multi-celled fruiting body. The silver chloride particles used by Sen's team, which are about 1µm in size, behave in a similar fashion when irradiated with UV light. Silver chloride decomposes under UV light, releasing ions that act as both a propulsion mechanism and signal substance.

This phenomenon is based on diffusiophoresis, the movement of particles along an electrolyte gradient. The silver chloride particles "swim" toward a higher ion concentration. Because of irregularities in the surfaces of the particles and non-uniform irradiation, the degradation of the particles is asymmetric. Different quantities of ions are released in different places on the surface, which results in a local ion gradient around the particles. The particle thus produces its own ion gradient, which propels it at speeds up to 100 µm/s (self-diffusiophoresis). Neighboring sliver chloride particles follow the ion gradient of the solution and "swim" to regions of higher particle density. After several minutes, this results in small, stable "swarms" of particles. Photochemically inactive silicon dioxide particles also react to the ion signal, aggregating around the silver chloride particles.

This system can be used as a nonbiological model for communication between cells. Most importantly though, it represents a new design principle for "intelligent" synthetic nano- or micromachines that can work together as a team.

Author: Ayusman Sen, The Pennsylvania State University, University Park (USA), research.chem.psu.edu/axsgroup/dr_sen.html

Title: Schooling Behavior of Light-Powered Autonomous Micromotors in Water

Angewandte Chemie International Edition 2009, 48, No. 18, 3308-3312, doi: 10.1002/anie.200804704

####

About Angewandte Chemie
Introduced in 1997, Wiley InterScience® (www.interscience.wiley.com) is a leading international resource for scientific, technical, medical and scholarly content.

In June 2008, Wiley InterScience incorporated the online content formerly hosted on Blackwell Synergy to provide access to over 3 million articles across 1400 journals. This massive archive, combined with some 7000 OnlineBooks and major reference works—plus industry leading databases such as The Cochrane Library, and the acclaimed Current Protocols laboratory manuals—make Wiley InterScience one of the world's premiere resources for advanced research.

For more information, please click here

Contacts:
Editorial office:

or
Amy Molnar (US):
or
Jennifer Beal (UK):
or
Alina Boey (Asia):

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project