Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanopore Sequencing Could Slash DNA Analysis Costs

Abstract:
Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four nucleotide bases as a piece of DNA moves through the pore.

Nanopore Sequencing Could Slash DNA Analysis Costs

Bethesda, MD | Posted on March 28th, 2009

Now, investigators at Oxford Nanopore Technologies in the United Kingdom have successfully tested a system that can identify a piece of DNA's bases directly as it moves through a modified protein nanopore. With further development, this system could greatly reduce the expensive equipment, chemicals, and lab time needed for current scanning methods, said Gordon Sanghera, Ph.D., Oxford's chief executive.

"You move from days to hours to get the same information, and the equipment required is a lot simpler," Dr. Sanghera said.

Most current DNA sequencers use fluorescent chemical tags that attach to each of the four chemicals that make up a "letter" in the DNA sequence. Sophisticated cameras and software read the tags to identify the genes. In contrast, the system described by these Oxford scientists in the journal Nature Nanotechnology sends DNA one letter at a time through a microscopic, biologically engineered hole, or "nanopore." An electrical current passed across the hole responds differently to each of the four letters in the genetic code, allowing scientists to accurately read each letter.

"This demonstration that you can distinguish among the four bases with a purely electronic signal I think is just an incredible advance," said Jeffery Schloss, Ph.D., director of the National Human Genome Research Institute's sequencing technology program.

Advances in sequencing technology have been swift since the Human Genome Project completed its map of the genetic code in 2003 for $300 million. The current rate hovers around $100,000, although the Federal Government is pledging millions to DNA sequencing research in hopes of achieving a $1,000 genome scan by 2014. Oxford believes its nanopore sequencing could be a contender for the $1,000 scan. However, the company has used nanopores to read only individual DNA letters so far. The company is still working to improve its system to scan entire strands of DNA.
This work is detailed in the paper "Continuous base identification for single-molecule nanopore DNA sequencing." Researchers from the University of Oxford also participated in this study. An abstract of this paper is available at the journal's Web site.

View abstract here www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.12.html

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project