Home > Press > Polymer Nanowires Detect Cancer Biomarker
Abstract:
Investigators at the University of California, Riverside, have developed a simple and cost-effective method of building conducting polymer nanowires that can detect a wide range of levels of a cancer biomarker. This work, which was published in the journal Analytical Chemistry, could serve as a model for portable cancer detection equipment suitable for use in a doctor's office.
Ashok Mulchandani, Ph.D., led the research team that developed this new device. At its heart lies polypyrrole nanowires connected to a pair of gold electrodes spaced a mere 3 microns apart. The researchers use an applied electric field to move individual nanowires into proper alignment on the gold electrodes. They then coat the nanowires with a material known as EDC that can serve as an attachment point for antibodies and other molecules that bind to specific cancer biomarkers. In the work reported in their recent paper, the investigators attached an antibody that binds to the cancer biomarker CA 125.
When solutions with known concentrations of CA 125 were applied to the biosensor, the device accurately measured concentrations as low as 1 "enzymatic unit" per milliliter (U/mL) of solution to as high as 1,000 U/mL. The maximal normal blood level of CA 125 is considered to be 35 U/mL. The researchers obtained identical results when they tested human blood plasma for CA 125 levels.
The researchers note that their next step will be to create a device capable of measuring a panel of disease markers simultaneously. They also plan to incorporate their biosensor into a microfluidic device that would be suitable for use in a portable disease detection system.
This work is detailed in the paper "Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker." An abstract of this paper is available at the journal's Web site.
View abstract here pubs.acs.org/doi/abs/10.1021/ac802319f
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |