Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > No Small Measure: Origins of Nanorod Diameter Discovered

Abstract:
A new study answers a key question at the very heart of nanotechnology: Why are nanorods so small?

No Small Measure: Origins of Nanorod Diameter Discovered

Troy, NY | Posted on March 24th, 2009

Researchers at Rensselaer Polytechnic Institute have discovered the origins of nanorod diameter, demonstrating that the competition and collaboration among various mechanisms of atomic transport hold the key to nanorod size. The researchers say it is the first study to identify the fundamental reasons why nearly all nanorods have a diameter on the order of 100 nanometers.

"Scientists have been fabricating nanorods for decades, but no one has ever answered the question, ‘Why is that possible?'" said Hanchen Huang, professor in Rensselaer's Department of Mechanical, Aerospace, and Nuclear Engineering, who led the study. "We have used computer modeling to identify, for the first time, the fundamental reasons behind nanorod diameter. With this new understanding, we should be able to better control nanorods, and therefore design better devices."

Results of the study, titled "A characteristic length scale of nanorods diameter during growth," were recently published in the journal Physical Review Letters.

When fabricating nanorods, atoms are released at an oblique angle onto a surface, and the atoms accumulate and grow into nanorods about 100 nanometers in diameter. A nanometer is one billionth of a meter in length.

The accumulating atoms form small layers. After being deposited onto a layer, it takes varying amounts of energy for atoms to travel or "step" downward to a lower layer, depending on the step height. In a previous study, Huang and colleagues calculated and identified these precise energy requirements. As a result, the researchers discovered the fundamental reason nanorods grow tall: as atoms are unable to step down to the next lowest layer, they begin to stack up and grow higher.

It is the cooperation and competition of atoms in this process of multi-layer diffusion that accounts for the fundamental diameter of nanorods, Huang shows in the new study. The rate at which atoms are being deposited onto the surface, as well as the temperature of the surface, also factor into the equation.

"Surface steps are effective in slowing down the mass transport of surface atoms, and aggregated surface steps are even more effective," Huang said. "This extra effectiveness makes the diameter of nanorods around 100 nanometers; without it the diameter would go up to 10 microns."

Beyond advancing scientific theory, Huang said the discovery could have implications for developing photonic materials and fuel cell catalysts.

Huang co-authored the paper with Rensselaer Research Scientist Longguang Zhou.

Funding for this research was provided by the U.S. Department of Energy Office of Basic Energy Science.

Visit Huang's Web site (http://www.rpi.edu/~huangh/) for more information on his nanotechnology and materials research.

####

About Rensselaer Polytechnic Institute
Throughout its history, Rensselaer research has produced ground-breaking work in a broad range of important areas.

Early RPI engineering graduates built bridges that linked people, commerce, and communities. Today, Rensselaer people are building the bridges that will link the world to the promises of new technologies.

The collaborative efforts of our students, faculty, corporate partners, and government agencies are generating a new momentum in research and the development of innovative technologies, including biotechnology, information technology, and nanotechnology.

Creating and applying knowledge, and interdisciplinary inquiry, with a rigorous approach to solving problems, Rensselaer men and Rensselaer women are fulfilling the university’s role as a place where people find innovative solutions to complex technical challenges.

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Fuel Cells

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project