Home > Press > FDA Assessing Feasibility of Using Nanotechnology Test to Detect Anthrax Following a Bioterrorist Attack
Abstract:
Test might be adaptable for use in resource-limited environments
The U.S. Food and Drug Administration has completed a "proof-of-concept" study of a test that quickly and accurately detects the presence of even the smallest amount of the deadly anthrax toxin.
"The FDA findings could form the basis of a test that allows earlier diagnosis of anthrax infection than currently possible," said Indira Hewlett, Ph.D., the senior author of the study and chief of the Laboratory of Molecular Virology, Office of Blood Research and Review, at the FDA's Center for Biologics Evaluation and Research (CBER). "The earlier those infected with anthrax can be treated, the better."
A proof-of-concept study is an initial investigation that aims to determine if a new scientific idea or concept holds promise for further development. A report on the results of this study appears in the March issue of Clinical and Vaccine Immunology.
Anthrax is an infectious disease caused by the bacterium Bacillus anthracis, a bacteria that forms spores, or dormant cells, which can come to life under the right temperature, nutrients and other conditions to allow growth. Anthrax occurs in humans after exposure to an infected animal or infected animal tissue or when anthrax spores are used as a bioterrorist weapon.
The proof-of-concept study developed by FDA researchers relies on a nanotechnology-based test platform built from tiny molecular-sized particles. This assay, the europium nanoparticle-based immunoassay (ENIA), was able to detect the presence of a protein made by the anthrax bacteria known as protective antigen (PA). PA combines with another protein called lethal factor to form anthrax lethal factor toxin, the protein that enters cells and causes toxic effects.
The researchers showed that ENIA is capable of detecting PA in quantities that are 100 times lower than current tests, such as the enzyme-linked immunosorbent assay (ELISA). Both the ELISA and ENIA rely on antibodies that have an affinity for the anthrax protein of interest.
The FDA test is a modified version of ELISA, which is already commonly used to detect anthrax and other infections. The researchers call their new test 'europium nanoparticle-based immunoassay,' because atoms of europium are key to the assay's sensitivity.
The ENIA uses molecular spheres (called nanospheres) covered with thousands of light-emitting atoms of europium that emit light, which acts as a signal that PA is present. The CBER team further enhanced the signal by modifying the nanospheres so they held additional atoms of europium, making the test more sensitive.
The ENIA detected PA in 100 percent of samples of mouse plasma compared to 36.4 percent through ELISA.
Nanotechnology-based tests like the ENIA are rapidly emerging as convenient tools for a variety of laboratory uses, according to Shixing Tang, M.D., Ph.D., a visiting associate scientist in the Laboratory of Molecular Virology, CBER. "ENIA has potential use in an emergency because its relatively simple design makes the technology adaptable to point-of-care uses," said Dr. Tang, the first author of the study.
The researchers developed the ENIA for PA in response to the increased interest in the scientific community for new anthrax assays following the 2001 U.S. anthrax attack that killed five people.
Co-authors of the article, "Detection of Anthrax Toxin by an Ultrasensitive Immunoassay Using Europium Nanoparticles," include Jiangqin Zhao (CBER), Mahtab Moayeri, Zhaochun Chen, Haijing Hu, Robert H. Purcell, and Stephen H. Leppla (National Institute of Allergy and Infectious Diseases, National Institutes of Health), and Harri Harma (University of Turku, Finland).
####
About FDA
The FDA is responsible for protecting the public health by assuring the safety, efficacy, and security of human and veterinary drugs, biological products, medical devices, our nation’s food supply, cosmetics, and products that emit radiation. The FDA is also responsible for advancing the public health by helping to speed innovations that make medicines and foods more effective, safer, and more affordable; and helping the public get the accurate, science-based information they need to use medicines and foods to improve their health.
Contacts:
Media:
Karen Riley
301-827-6244
Consumer Inquiries:
888-INFO-FDA
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||