Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscopic probes can track down and attack cancer cells

Purdue professor Joseph Irudayaraj uses a magnet to attract tiny magnetic particles in a solution. Irudayaraj designed nanoprobes with gold and magnetic particles that could be used to deliver drugs directly to cancer cells. (Purdue Agricultural Communication photo/Tom Campbell)
Purdue professor Joseph Irudayaraj uses a magnet to attract tiny magnetic particles in a solution. Irudayaraj designed nanoprobes with gold and magnetic particles that could be used to deliver drugs directly to cancer cells. (Purdue Agricultural Communication photo/Tom Campbell)

Abstract:
A researcher has developed probes that can help pinpoint the location of tumors and might one day be able to directly attack cancer cells.

Nanoscopic probes can track down and attack cancer cells

West Lafayette, IN | Posted on March 16th, 2009

Joseph Irudayaraj, a Purdue University associate professor of agricultural and biological engineering, developed the nanoscale, multifunctional probes, which have antibodies on board, to search out and attach to cancer cells.

A paper detailing the technology was released last week in the online version of Angewandte Chemie, an international chemistry journal.

"If we have a tumor, these probes should have the ability to latch on to it," Irudayaraj said. "The probe could carry drugs to target, treat as well as reveal cancer cells."

Scientists have developed probes that use gold nanorods or magnetic particles, but Irudayaraj's nanoprobes use both, making them easier to track with different imaging devices as they move toward cancer cells.

The magnetic particles can be traced through the use of an MRI machine, while the gold nanorods are luminescent and can be traced through microscopy, a more sensitive and precise process. Irudayaraj said an MRI is less precise than optical luminescence in tracking the probes, but has the advantage of being able to track them deeper in tissue, expanding the probes' possible applications.

The probes, which are about 1,000 times smaller than the diameter of a human hair, contain the antibody Herceptin, used in treatment of metastatic breast cancer. The probes would be injected into the body through a saline buffering fluid, and the Herceptin would find and attach to protein markers on the surface of cancer cells.

"When the cancer cell expresses a protein marker that is complementary to Herceptin, then it binds to that marker," Irudayaraj said. "We are advancing the technology to add other drugs that can be delivered by the probes."

Irudayaraj said better tracking of the nanoprobes could allow doctors to pinpoint the location of known tumors and better treat the cancer.

The novel probes were tested in cultured cancer cells. Irudayaraj said the next step would be to run a series of tests in mice models to determine the dose and stability of the probes.

The research was funded through a National Institute of Health grant, as well as by the Purdue Research Foundation. Irudayaraj is head of a biological engineering team that includes postdoctoral researcher Chungang Wang and graduate student Jiji Chen.

####

Contacts:
Writer: Brian Wallheimer, (765) 496-2050,

Source: Joseph Irudayaraj, (765) 494-0388,

Ag Communications: (765) 494-2722;
Beth Forbes,
Agriculture News Page

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Purdue University Agricultural News

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project