Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology Accelerates Electric Vehicles Markets, Reaching 32.7 Million Autos Shipped by 2015

Abstract:
ELECTRONICS.CA PUBLICATIONS, the electronics industry market research and knowledge network, announces the availability of a new report entitled "Worldwide Nanotechnology Electric Vehicle Market Shares Strategies, and Forecasts".

Nanotechnology Accelerates Electric Vehicles Markets, Reaching 32.7 Million Autos Shipped by 2015

Canada | Posted on February 28th, 2009

Electric vehicles represent a quantum shift in transportation. The design trajectories are varied; the opportunities are significant as a quantum shift occurs in what the vehicle basic functions are and how the vehicle works. The car companies that leverage the market opportunity to shift to a new paradyne are likely to succeed. There are others who merely try to migrate existing styles and designs to electric vehicles. Buggy whips come to mind.

Markets for electric vehicles at 685 units in 2008 are anticipated to reach 32.7 million autos shipped by 2015, growing in response to demand for a renewable energy powered vehicle that lowers the total cost of ownership by a significant amount. Lithium-ion batteries used in cell phones and PCs, and in cordless power tools are proving the technology to power electric vehicles.

Worldwide nanotechnology thin film lithium-ion batteries are poised to achieve significant growth as units become more able to achieve deliver of power to electric vehicles efficiently. Less expensive lithium-ion batteries allow leveraging economies of scale and proliferation of devices into a wide range of applications. According to Susan Eustis, lead author of the study, "Economies of scale leverage the lithium-ion battery nanotechnology advances needed to make lithium-ion batteries competitive. Nanotechnology provided by lithium-ion research solves the issues poised by the need to store renewable energy. Lithium-ion batteries switch price reductions are poised to drive market adoption by making units affordable."

Nanotechnology results obtained in the laboratory are being translated into commercial products. The processes of translating the nanotechnology science into thin film lithium ion batteries are anticipated to be ongoing. The breakthroughs of science in the laboratory have only begun to be translated into life outside the lab, with a long way to go in improving the functioning of the lithium-ion batteries.

Unlike any other battery technology, thin film solid-state batteries show very high cycle life. Using very thin cathodes batteries have been cycled in excess of 45,000 cycles with very limited loss in capacity. After 45,000 cycles, 95% of the original capacity remained, according to the report.

Details of the new report, table of contents and ordering information can be found on Electronics.ca Publications' web site.

####

For more information, please click here

Contacts:
Electronics.ca Publications
Chiaki Sadanaga
Communications Manager
+1 514 429 1520

Copyright © ELECTRONICS.CA PUBLICATIONS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project