Home > News > Dubai-based tech institute claims major breakthrough
February 28th, 2009
Dubai-based tech institute claims major breakthrough
Abstract:
Your mobile phones and computers will become faster, more powerful and even smaller than they are now, thanks to a technological development by the Dubai Silicon Oasis-based Rochester Institute of Technology (RIT).
According to experts at RIT, advances in the past 40 years in electronics were achieved by making smaller devices that allow for placing more of them on the same chip.
RIT's research in nanophotonics and nanoplasmonics has resulted in "squeezing" or confining light in almost 20nmx20nm. This is a very significant result because it will enable them to make electronic devices even smaller than the existing ones and that means more computer power with faster devices that consume less power. Hence, once this technology hits the market your computer and mobile phone will become more powerful and even smaller.
Dr Mustafa AG Abushagur, President and Dean of RIT Dubai, told Emirates Business: "Electronics has changed the way we live, communicate, entertain and do business for the past 30 or so years. This was made possible by the invention of the integrated circuit (IC), which made possible the fabrication of a large number of transistors (switches) on the same silicon chip. What we have achieved at RIT is very significant because it will enable us to reduce the size of transistors to a level that is impossible now. This means that your computers, mobile phones, PDAs and other electronic devices will become much smaller, cheaper, faster and more powerful."
Source:
business24-7.ae
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |