Home > Press > Research advances nanowire technology for large-scale applications
LED lights Photo: © iPhoto/kr7ysztof |
Abstract:
Researchers at Northeastern created a network of nanowires that can be scaled up more efficiently and cost-effectively to create displays such as the NASDAQ sign in New York City's Times Square.
Using Gallium nitride (GaN), a highly effective semiconductor material, the team created, for the first time, a horizontally aligned network of GaN nanowires, which are integral components in the development of electrical circuits in the nanoscale. GaN is currently used to create light-emitting diodes (LED) and blue and ultra-violet emitting lasers.
Photo: © iPhoto/kr7ysztof
February 26, 2009
Researchers at Northeastern created a network of nanowires that can be scaled up more efficiently and cost-effectively to create displays such as the NASDAQ sign in New York City's Times Square.
Using Gallium nitride (GaN), a highly effective semiconductor material, the team created, for the first time, a horizontally aligned network of GaN nanowires, which are integral components in the development of electrical circuits in the nanoscale. GaN is currently used to create light-emitting diodes (LED) and blue and ultra-violet emitting lasers.
"Making devices that emit blue light and ultra-violet light is currently very expensive," said Latika Menon, assistant professor of physics and co-author of the study. "The horizontal structure of the GaN nanowire network will result in a more cost-effective way to advance this technology."
Electrodes allow for the flow of electricity between GaN nanowires and electrical wires, and the horizontal structure of the GaN nanowire networks are more easily attached to electrodes than vertical networks. In addition, the GaN nanowires have a cubic structure, with optical and transport properties that are more advanced than other nanowire structures, resulting in a more effective electrical circuit.
In terms of manufacturing, these horizontal network patterns can also be scaled up to large wafer sizes that are more compatible with the technology used to integrate them into new nanoelectronic devices. These devices connect nanotechnology and electronic devices to develop smaller and less costly manufacturing processes and products.
The research, published in a recent issue of the "Journal of Materials Chemistry," was funded by the National Science Foundation (NSF) and the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern. Other Northeastern researchers participating in this project include physicist Zhen Wu, as well as Myung Gwan Hahm and Yung Joon Jung from the department of mechanical and electrical engineering.
####
For more information, please click here
Contacts:
Jenny Catherine Eriksen
617-373-2802
Copyright © Northeastern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||