Home > Press > Graphene sheet thickness measured with SARFUS optical technique
Abstract:
A recent article in Journal of American Chemical Society from researchers at the University of Bordeaux (France) shows graphene sheets visualized and measured with the SARFUS optical technique [1].
This characterization was done in the framework of negatively charged graphene layers preparation from a graphite intercalation compound by dissolution in N-methylpyrrolidone. The dissolution is done spontaneously without sonication and yields to stable, air-sensitive solutions of laterally extended atom-thick graphene sheets and ribbons with dimensions over tens of micrometers. Graphene sheets characterization by Sarfus yields height of 0.3nm, in good accordance with AFM analyses on mica which give the actual height of graphene (ca. 0.4nm).
SARFUS is a new optical characterisation tool at the nanoscale commercialised by NANOLANE (Montfort-le-Gesnois, France) that increases the sensitivity of incoherent light optical microscopy to a point where it becomes possible to directly visualize nanometric films and isolated nano-objects with a standard optical microscope. Applications include for example rapid defect visualization of soft lithography, quality control of DNA biochips, direct visualization and measurement of nanolithography patterns, thin films and surface treatment studies, dynamic studies of crystallization and wetting applications, as well as direct behaviour and morphology characterization of nanotubes and nanowires.
[1] C.Valles et al, J. Am. Chem. Soc., 2008, 130 (47), pp 15802-15804
####
For more information, please click here
Contacts:
Philippe Croguennoc
Copyright © NANOLANE
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||