Home > News > Scientists Claim Big Leap in Nanoscale Storage
February 19th, 2009
Scientists Claim Big Leap in Nanoscale Storage
Abstract:
Nanotechnology researchers say they have achieved a breakthrough that could fit the contents of 250 DVDs on a coin-sized surface and might also have implications for displays and solar cells.
The scientists, from the University of California at Berkeley and the University of Massachusetts Amherst, discovered a way to make certain kinds of molecules line up in perfect arrays over relatively large areas. The results of their work will appear Friday in the journal Science, according to a UC Berkeley press release. One of the researchers said the technology might be commercialized in less than 10 years, if industry is motivated.
More densely packed molecules could mean more data packed into a given space, higher-definition screens and more efficient photovoltaic cells, according to scientists Thomas Russell and Ting Xu. This could transform the microelectronics and storage industries, they said. Russell is director of the Materials Research Science and Engineering Center at Amherst and a visiting professor at Berkeley, and Xu is a Berkeley assistant professor in Chemistry and Materials Sciences and Engineering.
Source:
pcworld.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Memory Technology
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |