Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Scientists Claim Big Leap in Nanoscale Storage

February 19th, 2009

Scientists Claim Big Leap in Nanoscale Storage

Abstract:
Nanotechnology researchers say they have achieved a breakthrough that could fit the contents of 250 DVDs on a coin-sized surface and might also have implications for displays and solar cells.

The scientists, from the University of California at Berkeley and the University of Massachusetts Amherst, discovered a way to make certain kinds of molecules line up in perfect arrays over relatively large areas. The results of their work will appear Friday in the journal Science, according to a UC Berkeley press release. One of the researchers said the technology might be commercialized in less than 10 years, if industry is motivated.

More densely packed molecules could mean more data packed into a given space, higher-definition screens and more efficient photovoltaic cells, according to scientists Thomas Russell and Ting Xu. This could transform the microelectronics and storage industries, they said. Russell is director of the Materials Research Science and Engineering Center at Amherst and a visiting professor at Berkeley, and Xu is a Berkeley assistant professor in Chemistry and Materials Sciences and Engineering.

Source:
pcworld.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project