Home > Press > New silver-based ink has applications in electronics, researchers say
Abstract:
A new ink developed by researchers at the University of Illinois allows them to write their own silver linings.
The ink, composed of silver nanoparticles, can be used in electronic and optoelectronic applications to create flexible, stretchable and spanning microelectrodes that carry signals from one circuit element to another. The printed microelectrodes can withstand repeated bending and stretching with minimal change in their electrical properties.
In a paper to be published Feb. 12, by Science Express, the online version of the journal Science, Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory, and her collaborators demonstrate patterned silver microelectrodes by omnidirectional printing of concentrated nanoparticle inks with minimum widths of about 2 microns on semiconductor, plastic and glass substrates.
"Unlike inkjet or screen printing, our approach enables the microelectrodes to be printed out-of-plane, allowing them to directly cross pre-existing patterned features through the formation of spanning arches," Lewis said. "Typically, insulating layers or bypass electrode arrays are required in conventional layouts."
To produce printed features, the researchers first prepare a highly concentrated silver nanoparticle ink. The ink is then extruded through a tapered cylindrical nozzle attached to a three-axis micropositioning stage, which is controlled by computer-aided design software.
When printed, the silver nanoparticles are not yet bonded together. The bonding process occurs when the printed structure is heated to 150 degrees Celsius or higher. During thermal annealing, the nanoparticles fuse into an interconnected structure. Because of the modest processing temperatures required, the printed features are compatible with flexible, organic substrates.
To demonstrate the versatility of the printing process, the researchers patterned both planar and out-of-plane silver microelectrodes; produced spanning interconnects for solar microcell and light-emitting-diode arrays; and bonded silver wires to fragile,
three-dimensional devices.
"Unlike conventional techniques, our approach allows fine silver wires to be bonded to delicate devices using minimal contact pressure," said postdoctoral researcher Bok Yeop Ahn, the lead author of the paper.
"Our approach is capable of creating highly integrated systems from diverse classes of electronic materials on a broad range of substrates," said graduate student Eric Duoss, a co-author of the paper. "Omnidirectional printing overcomes some of the design constraints that have limited the potential of printed electronics.
In addition to Lewis, Ahn and Duoss, the paper's co-authors include chemistry professor Ralph Nuzzo and materials science and engineering professor John Rogers, as well as members of their research groups.
The work was funded by the U.S. Department of Energy.
####
For more information, please click here
Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073
Jennifer Lewis
217-244-4973
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |