Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NRL researchers control the spin of semiconductor quantum dot shell states

Semiconductor QDs are nanoscale circular disks of one semiconducting material, typically 3 nm high by 30 nm in diameter, embedded within layers of a second material.

Credit: Naval Research Laboratory
Semiconductor QDs are nanoscale circular disks of one semiconducting material, typically 3 nm high by 30 nm in diameter, embedded within layers of a second material.

Credit: Naval Research Laboratory

Abstract:
Scientists at the Naval Research Laboratory (NRL) have recently demonstrated the ability to control the spin population of the individual quantum shell states of self-assembled indium arsenide (InAs) quantum dots (QDs). These results are significant in the understanding of QD behavior and scientists' ability to utilize QDs in active devices or for information processing. The scientists, from NRL's Materials Science and Technology Division, used a spin-polarized bias current from an iron (Fe) thin film contact and determined the strength of the interaction between spin-polarized electrons in the s, p and d shells. A complete description of this work can be found in Physical Review Letters (28 November 2008).

NRL researchers control the spin of semiconductor quantum dot shell states

Washington, DC | Posted on February 5th, 2009

Semiconductor QDs are nanoscale circular disks of one semiconducting material, typically 3 nm high by 30 nm in diameter, embedded within layers of a second material. Figure 1 shows such a structure, with an atomic force microscope image of the uncovered QDs in figure 2. Semiconductor QDs are attractive for a variety of quantum information processing, electronic and spintronic applications. In spintronic applications, the electron's spin rather than charge is used to store and process information. The International Technology Roadmap for Semiconductors has identified the electron's spin as a new state variable which should be explored as an alternative to the electron's charge for use beyond standard CMOS technology. The QD electronic structure exhibits the s,p,d,f shells characteristic of single atoms, so they are often referred to as "artificial atoms."

The NRL researchers monitor the shell population and spin polarization by measuring the polarized light emitted as a function of the bias current from the Fe contact. In contrast with previous work, they resolve features in the electroluminescence (EL) spectra associated with the individual quantum levels (s-, p-, d-, and f- shells). As the bias current is increased, the shell states fill, and the EL from the QDs exhibits peaks characteristic of the shell energies, as labeled in figure 3.

Intershell exchange strongly modifies the optical polarization observed from that expected for simple models of shell occupation. From a detailed analysis of the EL spectra, the NRL researchers were able to obtain the first experimental measure of the exchange energies between electrons in the s- and p-shells, and between electrons in the p- and d-shells. These energies describe the degree of interaction between these quantum levels.

####

For more information, please click here

Contacts:
Donna McKinney

202-404-3322

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project