Home > Press > Did You Say Flexible Electronics? - Organic electronic devices possible with supercritical carbon dioxide process
Cornell University researchers (left to right) Eisuke Murotani, George Malliaras, Alex Zakhidov, Christopher Ober, Priscilla Taylor, Hon Hang Fong, Jin Kyun Lee and John De Marco. The Cornell team is working with scientists at the University of Melbourne in Australia to develop "flexible electronics" from organic semiconducting materials.
Credit: Christopher K. Ober, Cornell University; people.ccmr.cornell.edu/~cober/ |
Abstract:
Someday, moving a large, flat-screen TV across the country might be as simple as taking it off the wall, rolling it up and sliding it into a study tube. That's the vision of researchers Christopher Ober and George Malliaras at Cornell University, and Andrew Holmes at the University of Melbourne, Australia, who are fabricating organic semiconducting materials with a little help from supercritical carbon dioxide, or CO2.
Organic semiconductors are the main component of a range of future organic electronics, such as flexible flat-panel displays, inexpensive solar cells and advanced medical devices. Because they are energy-efficient, inexpensive and lightweight, organic electronics are expected someday to compose a multi-billion industry.
Electronics today are dominated by inorganic materials, especially silicon. Development of organic electronic devices, necessary for that desired flexibility, has been stymied until now because ordinary solvents used in the photolithographic process are very damaging to active organic materials. The researchers, funded by the National Science Foundation, have developed a new process that instead employs supercritical CO2--a far gentler solvent with properties midway between a gas and a liquid.
Supercritical CO2 is an unusual solvent, not quite polar like water, but not quite non-polar like hydrocarbons. As a result it will not dissolve most organic semiconductors. It also has almost no viscosity, and it will wet everything. That means that only certain molecules or polymers are soluble in it. Researchers take advantage of these unique attributes by designing special photoresists that will work in such an environmentally friendly solvent.
The new fabrication process means layers of organic materials can be stacked and the interface between the layers isn't disturbed in the fabrication process. "The interface region is important for charge transport," Ober said. "If it remains undisturbed, we can fabricate small-scale structures with the same electronic characteristics as current large-scale devices."
With the new technology, electronic displays would be made of organic electronics on a substrate of plastic, which in addition to being flexible, is cheaper, lighter and more durable than current glass displays. Because the display is capable of generating its own light, the image would be would be clear in strong sunlight, another advantage over existing technology.
Smart bandages and solar panels are two additional candidates for organic electronics.
A smart bandage would revolutionize wound treatment. The bandage is something that hasn't changed for 10,000 years. To check a wound's progress, it is still necessary to peel back the bandage. "Smart bandages could monitor wound healing without disturbing the bandage, administer antibiotics as needed and send a medical staff up-to-date information about the wound's treatment," Ober said.
As for solar energy, organic electronics could give the technology a giant step forward. Only a very small fraction of power today is generated by solar cells, which convert solar energy into electricity, because they are expensive to produce and the efficiency of most common panels is only about 10 percent.
"With organic semiconducting materials, the panels would be much smaller, much more efficient and lighter than the current technology, making them much cheaper to produce and easier to mount on buildings," Ober said.
Experts predict if the cost of producing solar cells could be reduced by a factor of 10, solar energy would be not only environmentally favorable, but also economically favorable.
While the U.S. scientists provide expertise in evaluating the properties of materials and in the use of supercritical CO2 in device fabrication, the Australian group brings to the collaboration its synthetic capabilities to provide photo-resist materials designed to work together with supercritical carbon dioxide.
Investigators
Christopher Ober
George Malliaras
Related Institutions/Organizations
Cornell University
University of Melbourne
Locations
New York
Australia
####
About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.
For more information, please click here
Contacts:
Diane E. Banegas
(703) 292-8070
Copyright © National Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||