Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Worldwide Nanotechnology Thin Film Lithium-Ion Battery - Markets Reach $9 Billion by 2015

Abstract:
According to a new report available at Electronics.ca Publications, worldwide nanotechnology lithium-ion batteries are poised to achieve significant growth as units become smaller and less expensive broadening the types of energy applications in which they are included.

Worldwide Nanotechnology Thin Film Lithium-Ion Battery - Markets Reach $9 Billion by 2015

Kirkland, Quebec, Canada | Posted on January 14th, 2009

ELECTRONICS.CA PUBLICATIONS, the electronics industry market research and knowledge network, announces the availability of a new report entitled "Worldwide Nanotechnology Thin Film Lithium-Ion Battery Market Shares Strategies, and Forecasts, 2009-2015".

According to a new report available at Electronics.ca Publications, Worldwide Nanotechnology Thin Film Lithium-Ion Battery Market Shares Strategies, and Forecasts, 2009-2015, worldwide nanotechnology lithium-ion batteries are poised to achieve significant growth as units become smaller and less expensive broadening the types of energy applications in which they are included. The 2009 study has 412 pages, 112 Tables and Figures.

Worldwide nanotechnology thin film lithium-ion batteries are poised to achieve significant growth as units become more able to achieve deliver of power to electric vehicles efficiently. Less expensive lithium-ion batteries allow leveraging economies of scale and proliferation of devices into a wide range of applications. According to the study, economies of scale leverage the lithium-ion battery nanotechnology advances needed to make lithium-ion batteries competitive. Nanotechnology provided by lithium-ion research solves the issues poised by the need to store renewable energy. Lithium-ion batteries switch price reductions are poised to drive market adoption by making units affordable.

Nanotechnology results obtained in the laboratory are being translated into commercial products. The processes of translating the nanotechnology science into thin film lithium ion batteries are anticipated to be ongoing. The breakthroughs of science in the laboratory have only begun to be translated into life outside the lab, with a long way to go in improving the functioning of the lithium-ion batteries. Unlike any other battery technology, thin film solid-state batteries show very high cycle life. Using very thin cathodes batteries have been cycled in excess of 45,000 cycles with very limited loss in capacity. After 45,000 cycles, 95% of the original capacity remained.

Then there is the problem of translating the evolving technology into manufacturing process. What this means is that the market will be very dynamic, with the market leaders continuously being challenged by innovators, large and small that develop more cost efficient units. Systems integration and manufacturing capabilities have developed a broad family of high-power lithium-ion batteries and battery systems.

A family of battery products, combined with strategic partner relationships in the transportation, electric grid services and portable power markets, position vendors to address these markets for lithium-ion batteries. Electric Vehicles depend on design, development, manufacture, and support of advanced, rechargeable lithium-ion batteries. Batteries provide a combination of power, safety and life. Next-generation energy storage solutions are evolving as commercially available batteries. Lithium-ion batteries will play an increasingly important role in facilitating a shift toward cleaner forms of energy.

Innovative approaches to materials science and battery engineering are available from a large number of very significant companies - GE, Panasonic Sanyo / Matsushita Industrial Co., Ltd., NEC, Saft, Toshiba, BYD / Berkshire Hathaway, LG Chem, Altair Nanotechnologies, Samsung, Sony, A123 Systems with MIT technology, and Altair Nanotechnologies.

Markets for lithium-ion batteries at $911 million in 2008 are anticipated to reach $9.1 billion by 2015, growing in response to decreases in unit costs and increases. Lithium-ion batteries used in cell phones and PCs, and in cordless power tools are proving the technology. Units are shipped into military markets and are used in satellites, proving the feasibility of systems. Small, lithium-ion prismatic batteries prove the feasibility of this technology. The large emerging markets are for hybrid and electric vehicles powered by renewable energy systems.

Details of the new report, table of contents and ordering information can be found on Electronics.ca Publications' web site.

####

For more information, please click here

Contacts:
Chiaki Sadanaga
Phone: +1 514 429 1520

Copyright © Electronics.ca Publications

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project