Home > Press > South Bend is Forging Its High Tech Future, Says Nanoelectronics Executive
Abstract:
In the coming year, South Bend will continue to take giant steps toward building its high tech future, according to a national authority on nanoelectronics.
Jeffrey Welser, Ph.D., director of the Semiconductor Research Corp.'s Nanoelectronics Research Initiative, made those comments following South Bend's Jan. 5 announcement of a brand new name for an emerging 83-acre technology park - Ignition ParkSM - which the city will market to nanoelectronic and other technology-based businesses.
Ignition Park, along with Innovation Park at Notre Dame, make up a dual-site technology park in South Bend - Indiana's first ever state-certified technology park affiliated with two research universities: the Indiana University School of Medicine at South Bend and the University of Notre Dame.
For its part, Innovation Park is a collaborative venture between the City of South Bend and the University of Notre Dame, which will translate research discoveries from initial concept to commercialization.
The success of both Ignition Park and Innovation Park will be bolstered by the Midwest Institute for Nanoelectronics Discovery (MIND), which Welser's organization established last year in South Bend.
MIND is one of four primary research centers nationwide, and is comprised of Notre Dame and other universities, and is funded by the National Institute of Standards and Technology as well as a consortium of the world's leading computer chip makers - including IBM, AMD, Intel, Micron and Texas Instruments.
In the following interview, Welser offered his insights about MIND, South Bend, and the area's future as a center of nanoelectronic discovery.
Q: How did South Bend end up as the location for MIND?
A: The NRI's main goal is to advance research that will be the basis for the next generation of computer chips. The current transistor architecture - CMOS, which means Complementary Metal Oxide Semiconductor - is expected to reach its limits probably by 2020, so we need to accelerate the development of revolutionary nanoelectronic technologies that are quite different from what we have now.
Toward this goal, the NRI has been looking for game-changing locations with a strong research and development base, combined with economic support at the local and state levels.
And South Bend was one of those key locations.
The University of Notre Dame's technical work in nanotechnology was attractive to us, and the university's commitment to building a new engineering center also was important, too.
Officials from South Bend's city government, as well as Project Future [which promotes economic development in the area] met with us and made it clear that they wanted to support MIND in very real ways.
The city supported the development of Innovation Park, which will provide research and commercialization support for discoveries coming out of MIND and Notre Dame. It also provided land and millions of dollars toward developing another technology park - Ignition Park - in what is known as the Studebaker corridor - for technology businesses to grow.
This was very much a tipping point in our decision to locate MIND in South Bend.
Q: The city of South Bend has a strong partnership with the University of Notre Dame. Is this sort of community-university partnership unique?
A: The strong partnership between the city of South Bend and the University of Notre Dame is unlike any other city-university relationship we've seen.
Cities typically have not played the kind of active role that South Bend has when it comes to establishing these types of centers. The City of South Bend wanted to be an equal partner in promoting MIND, and has demonstrated its support economically and in other ways.
Q: How will MIND benefit South Bend?
A: If you look back at any major industries going forward, the ones that bring the most benefits have been based on some sort of breakthrough or major technological innovation.
So I definitely think investing in research facilities that cover a broad set of areas not only in nanoelectronics, but also the full range of nanotechnology, gives you the best likelihood of finding breakthroughs that can lead to new industries in the field. And South Bend is positioning itself to be at the ground level of these new ground-breaking industries.
Q: In what other ways will South Bend be attractive to individuals and companies in the nanoelectronic field?
A: There are a number of positives about South Bend that are attractive to companies interested in investing or locating there.
From an industrial point of view, the area is more affordable to set up locations in South Bend, by virtue of the fact that the city and the state have created various incentives.
Quality of life and cost of living are important - there are distinct advantages to being in South Bend or Indiana, for that matter, compared to more pricey parts of the country. Yet you're an hour and a half from Chicago, which offers all the advantages of a major world-class metropolitan area.
You've also got beaches, dunes and "vacation land" to the north on Lake Michigan, comparable to but more affordable than vacation spots on the east coast. That's a big draw for people as well.
Q: How does MIND stand out as an important nanoelectronic research center?
A: One of the things that we've noticed about the MIND center is that it rapidly ramped up its technical program and integrated professors not only from Notre Dame but also from the other universities involved.
This is largely due to the people leading MIND - its Technical Director, Alan Seabaugh, Prof. Wolfgang Porod, and Bob Dunn, MIND's Managing Director. One of the things they did early on was hire Bob Dunn [formerly an IBM executive], and he was someone who could really organize things from an operations standpoint. They are extremely efficient, and already have taken the lead on a special benchmarking initiative to evaluate the various technologies being worked on in MIND and across the NRI centers, to better understand their potential in future chip products. This work should help focus - and accelerate - the research in the directions that offer the most promise for specific market applications.
Q: Why is MIND important to the evolution of computer technology?
A: MIND will be focused on extending computer chip technology beyond its current capability. The "holy grail" of this research is to find a new switch to extend beyond CMOS, but whatever MIND might develop along the way will undoubtedly end up benefiting the chip industry in many different ways that we haven't even thought of yet. And this research can impact other areas even beyond computer chip technology, such as biotechnology, space and energy.
Keep in mind, though, that these developments may be a few years down the line. It takes time, of course, to move research from the lab to a product that people can use.
But that's the point of having Innovation Park and Ignition Park, the other technology park in South Bend, to bring these discoveries to market, and support the companies that commercialize them.
####
Contacts:
The Blue Waters Group, Inc.
Bill Shepard
1-877-851-4163
Copyright © Business Wire 2008
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||