Home > Press > E.ON backs major organic-inorganic hybrid photovoltaic project at the Advanced Technology Institute
Abstract:
The Advanced Technology Institute at the University of Surrey has been awarded a major research grant by the energy giant E.ON based in Germany as part of their 'Application of Nanotechnology in the Energy Business'. The three year project, led by Professor Ravi Silva, Director of the Advanced Technology Institute, aims to utilise the nanotechnological expertise of the institute in the design, fabrication and characterisation of the organic-inorganic hybrid solar cells.
At present over 90% of the solar cell modules are silicon-based, which offer relatively high power conversion efficiencies, albeit at a higher cost. Conventional technologies have not been able to address the key issue facing the solar electricity market; the high cost of a unit of energy produced. The aim of all major PV projects to date has been either a highly efficient $1 per Watt cell, or a more pragmatic cell/system approach of possibly lower cell efficiency, but with a significant manufacturing, power electronics and installation cost advantage. The emergence of organic material based solar cell technologies promise great potential towards low cost energy. Their solution-based simple fabrication techniques are expected to off-set the inherently lower efficiencies of the organic cells. Professor Silva's group at the University of Surrey aims to improve these technologies even further, and move closer to commercialisation, by incorporating inorganic nano-scale materials with their expertise in nanotechnology. Carbon nanotubes, which are nano-scale structures, can be incorporated into organic cells enhancing their performance greatly, according to Professor Silva. The University holds a number of patents in developing hybrid systems for practical applications including solar cells and solid state lighting, and he believes with this new project, these materials can be effectively used to solve one of the burning issues of the day, energy.
Professor Ben Murdin, Associate Dean for Research, comments: "This project is a fine example of basic research, undertaken as part of an EPSRC Portfolio Partnership, moving to the next stage of exploitation. The grant of close to €1m will be a welcome addition to the nanotechnology portfolio of the Faculty and University."
####
About University of Surrey
The University of Surrey is one of the UK’s leading professional, scientific and technological universities with a world class research profile and a reputation for excellence in teaching and research. Ground-breaking research at the University is bringing direct benefit to all spheres of life – helping industry to maintain its competitive edge and creating improvements in the areas of health, medicine, space science, the environment, communications, defence and social policy. Programmes in science and technology have gained widespread recognition and it also boasts flourishing programmes in dance and music, social sciences, management and languages and law. In addition to the campus on 150 hectares just outside Guildford, Surrey, the University also owns and runs the Surrey Research Park, which provides facilities for 140 companies employing 2,700 staff.
The Sunday Times names Surrey as ‘The University for Jobs' which underlines the university’s growing reputation for providing high quality, relevant degrees.
For more information, please click here
Contacts:
Peter La
Press Office
University of Surrey
44 01483 689191
Copyright © University of Surrey
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||