Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HRL Laboratories Demonstrates World's First Graphene RF Field-Effect Transistors Under DARPA's CERA Program

Abstract:
HRL Laboratories, LLC, demonstrated the first graphene field-effect transistors (FETs) using epitaxial graphene film operating in the radio frequency (RF) range. Prior efforts with graphene FETs used exfoliated graphene films. The HRL milestone is a key step toward wafer-scale high-speed RF FETs, which could lead to a new generation of carbon-based RF integrated circuits for ultra-high-speed, ultra-low-power applications.

HRL Laboratories Demonstrates World's First Graphene RF Field-Effect Transistors Under DARPA's CERA Program

Malibu, CA | Posted on December 5th, 2008

HRL Laboratories, LLC, announced today it has demonstrated the world's first graphene RF field effect transistors (FETs) as part of the Carbon Electronics for RF Applications, or CERA program. The milestone is the first in the proposed 51-month, three-phase program to develop a new generation of carbon-based radio-frequency (RF) integrated circuits for ultra-high-speed, ultra-low-power applications.

The goal of the effort, sponsored by the Defense Advanced Research Projects Agency (DARPA) and under the management of the Space and Naval Warfare Systems Center (SPAWAR), is to exploit the unique qualities of graphene carbon to create components that will enable unprecedented capabilities in high-bandwidth communications, imaging, and radar systems. HRL is collaborating with a group of universities, commercial companies and the Naval Research Laboratory (NRL) on the program.

While graphene FETs have been demonstrated before, most used exfoliated graphene films. "HRL, working with the NRL, demonstrated graphene FETs using epitaxial film operating in the RF frequency range," said Jeong-sun Moon, Senior Research Scientist with the Microelectronics Laboratory at HRL. "This is a key step toward wafer-scale high-speed graphene RF FETs that operate in the RF domain."

The military's ability to develop sophisticated imaging and communications systems is hindered by RF component cost, limited resolution, and high power dissipation. A graphene-on-Silicon platform could revolutionize a number of military applications because of its high performance, scalability, integration and low cost.

Graphene is a single layer of carbon atoms densely packed in a honeycomb crystalline lattice configuration--like chicken wire on an atomic scale. The advantages of this configuration are its high current-carrying capacity, excellent thermal conductivity and low-voltage operational potential.

Moon said the current results are very promising. "The next step will be to continue to optimize material synthesis and device processing to see if we can harness the unique properties of graphene to make a new generation, state-of-the-art technology for future high-speed, low-cost military RF systems-on-chips," he said.

In upcoming phases of the project, the HRL team will fabricate FETS on 100-mm wafers and then scale up the process to 200-mm wafers to create a demonstration prototype of the new generation of carbon-based RF integrated circuits.

####

About HRL Laboratories, LLC
HRL Laboratories, LLC, Malibu, California (www.hrl.com) is a corporate research-and-development laboratory owned by The Boeing Company and General Motors specializing in research into sensors and materials, information and systems sciences, applied electromagnetics, and microelectronics. HRL provides custom research and development and performs additional R&D contract services for its LLC member companies, the U.S. government, and other commercial companies.

For more information, please click here

Contacts:
Michele Durant
HRL Laboratories
310 317-5321

Copyright © PRWeb™

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project