Home > News > Revving up the race for better fuel efficiency:Innovations could change the way we drive in the not-too-distant future
December 1st, 2008
Revving up the race for better fuel efficiency:Innovations could change the way we drive in the not-too-distant future
Abstract:
Mercouri G. Kanatzidis, a professor of chemistry at Northwestern University in Evanston, Ill., and colleagues had been trying to find more efficient materials when they observed a strange phenomenon with a common semiconductor, lead telluride.
When the team added tiny inclusions of the metals lead and antimony and turned up the heat, the material's conductivity doubled, freeing up the movement of the electrons, hence upping the efficiency of converting heat into electricity.
"Normally, when you add nano-inclusions into semi-conductors you tend to mess them up and things get worse," he said. "In this case, things got better."
The only problem is that the researchers don't really understand why. "Nobody has seen anything like this before and we're still struggling to come up with a primitive model for this," said Kanatzidis, who published the results Oct. 27 in the German chemistry journal Angewandte Chemie International Edition.
Kanatzidis believes his team can already demonstrate a doubling of typical thermoelectric efficiency, and a quadrupling may yet be achievable, with financial backing from the U.S. Office of Naval Research.
Source:
msnbc.msn.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |