Home > Press > McMaster University unveils world's most advanced microscope: So powerful it can probe the spaces between atoms
Abstract:
The most advanced and powerful electron microscope on the planet—capable of unprecedented resolution—has been installed in the new Canadian Centre for Electron Microscopy at McMaster University.
"We are the first university in the world with a microscope of such a high calibre," says Gianluigi Botton, director of the Canadian Centre for Electron Microscopy, professor of Materials Science and Engineering, and the project's leader. "The resolution of the Titan 80-300 Cubed microscope is remarkable, the equivalent of the Hubble Telescope looking at the atomic level instead of at stars and galaxies. With this microscope we can now easily identify atoms, measure their chemical state and even probe the electrons that bind them together."
Because we are at the very limits of what physics allows us to see, —"even breathing close to a regular microscope could affect the quality of the results," says Botton—the new microscope is housed in a stable, specially designed facility able to withstand ultralow vibrations, low noise, and minute temperature fluctuations. Operation of the instrument will also be done from a separate room to ensure results of the highest quality.
Built in the Netherlands by the FEI Company at a cost of $15-million, the Titan cluster will examine at the nano level hundreds of everyday products in order to understand, manipulate and improve their efficiency, says John Preston, director of McMaster's Brockhouse Institute for Materials Research.
The microscope will be used to help produce more efficient lighting and better solar cells, study proteins and drug-delivery materials to target cancers. It will assess atmospheric particulates, and help create lighter and stronger automotive materials, more effective cosmetics, and higher density memory storage for faster electronic and telecommunication devices.
"The addition of the Titan 80-300 Cubed to the Centre's suite of microscopy instruments that include a Titan cryo-in situ solidifies Ontario's and Canada's lead in nanotechnology, and places us among the world's most advanced materials research institutions," says Mo Elbestawi, McMaster's vice-president, Research and International Affairs.
Funding for the microscope instrumentation was provided by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ministry of Research and Innovation of Ontario and the Ontario Ministry of Economic Development and Trade, through a partnership with FEI and McMaster University.
####
For more information, please click here
Contacts:
Jane Christmas
905-525-9140 x27988
Copyright © McMaster University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |