Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers write protein nanoarrays using a fountain pen and electric fields

Abstract:
Nanotechnology offers unique opportunities to advance the life sciences by facilitating the delivery, manipulation and observation of biological materials with unprecedented resolution. The ability to pattern nanoscale arrays of biological material assists studies of genomics, proteomics and cell adhesion, and may be applied to achieve increased sensitivity in drug screening and disease detection, even when sample volumes are severely limited.

Researchers write protein nanoarrays using a fountain pen and electric fields

EVANSTON, IL | Posted on October 13th, 2008

Unfortunately, most tools capable of patterning with such tiny resolution were developed for the silicon microelectronics industry and cannot be used for soft and relatively sensitive biomaterials such as DNA and proteins.

Now a team of researchers at Northwestern University has demonstrated the ability to rapidly write nanoscale protein arrays using a tool they call the nanofountain probe (NFP).

"The NFP works much like a fountain pen, only on a much smaller scale, and in this case, the ink is the protein solution," said Horacio Espinosa, head of the research team and professor of mechanical engineering in the McCormick School of Engineering and Applied Science at Northwestern.

The results, which will be published online the week of Oct. 13 in the Proceedings of the National Academy of Sciences (PNAS), include demonstrations of sub-100-nanometer protein dots and sub-200-nanometer line arrays written using the NFP at rates as high as 80 microns/second.

Each nanofountain probe chip has a set of ink reservoirs that hold the solution to be patterned. Like a fountain pen, the ink is transported to sharp writing probes through a series of microchannels and deposited on the substrate in liquid form.

"This is important for a number of reasons," said Owen Loh, a graduate student at Northwestern who co-authored the paper with fellow student Andrea Ho. "By maintaining the sensitive proteins in a liquid buffer, their biological function is less likely to be affected. This also means we can write for extended periods over large areas without replenishing the ink."

Earlier demonstrations of the NFP by the Northwestern team included directly writing organic and inorganic materials on a number of different substrates. These included suspensions of gold nanoparticles, thiols and DNA patterned on metallic- and silicon-based substrates.

In the case of protein deposition, the team found that by applying an electrical field between the nanofountain probe and substrate, they could control the transport of protein to the substrate. Without the use of electric fields, protein deposition was relatively slow and sporadic. However, with proper electrical bias, protein dot and line arrays could be deposited at extremely high rates.

"The use of electric fields allows an additional degree of control," Espinosa said. "We were able to create dot and line arrays with a combination of speed and resolution not possible using other techniques."

Positively charged proteins can be maintained inside the fountain probe by applying a negative potential to the NFP reservoirs with respect to a substrate. Reversing the applied potential then allows protein molecules to be deposited at a desired site.

To maximize the patterning resolution and efficiency, the team relied on computational models of the deposition process. "By modeling the ink flow within the probe tip, we were able to get a sense of what conditions would yield optimal patterns," says Jee Rim, a postdoctoral researcher at Northwestern.

Espinosa collaborated closely with Neelesh Patankar, associate professor of mechanical engineering at Northwestern, and Punit Kohli, assistant professor of chemistry and biochemistry at Southern Illinois University, Carbondale.

"We are very excited by these results," said Espinosa. "This technique is very broadly applicable, and we are pursuing it on a number of fronts." These include single-cell biological studies and direct-write fabrication of large-scale arrays of nanoelectrical and nanoelectromechanical devices.

"The fact that we can batch fabricate large arrays of these fountain probes means we can directly write large numbers of features in parallel," added Espinosa. "The demonstration of rapid protein deposition rates further supports our efforts in producing a large-scale nanomanufacturing tool."

The paper in the Proceedings of the National Academy of Sciences was authored by Loh, Ho, Rim, Patankar, Kohli and Espinosa.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project