Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hybrid Plastics Achieves a Milestone with Nanoscopic Materials for Suppression of Tin Whiskers from Lead-free Solders

Tin Whiskers with Short-Stop and without Short-Stop (20 µm)
Tin Whiskers with Short-Stop and without Short-Stop (20 µm)

Abstract:
Hybrid Plastics under sponsorship from The National Science Foundation, Electronics Division, has reached a milestone by producing the first conformal coating capable of suppressing tin whiskers. Lead-free electronics are ubiquitous. Consequently, so is the potential of electronic short circuits from conductive tin whiskers which grow from lead-free solder joints and interconnects.

Hybrid Plastics Achieves a Milestone with Nanoscopic Materials for Suppression of Tin Whiskers from Lead-free Solders

Hattiesburg, MS: | Posted on September 23rd, 2008

The POSS® Short-Stop is optically transparent, colorless and available as a sprayable coating for application to OEM and repair of electronic circuits. The new materials were developed under a Small Business Innovation Research (SBIR) contract between Hybrid Plastics Inc., subcontractor Michigan State University and collaborator Vista Engineering. The effort was focused on solving a well-recognized problem of lead-free solders - the growth of conductive tin-whiskers.

Depending on the spacing of interconnects and environmental stress, conductive tin whiskers may grow long enough to create short circuits that cause electronic systems to malfunction or become permanently damaged. The solution was enabled through incorporation of mercapto functionalized Polyhedral Oligomeric Silsesquioxane (POSS) nanocages into polyimide coatings. The mercapto groups bind to the metal surface, protonate through the metal oxide layer and bind to the underlying tin atoms thereby mitigating compressive stress and nucleation of whisker growth. In the event that tin whiskers do grow, a tough high modulus polyimide surface coating is also utilized to force collapse of the whisker and thereby physically isolate whiskers against short-circuiting or detachment.

POSS® [Polyhedral Oligomeric Silsesquioxanes] is a revolutionary new Nanotechnology based on silicon-derived building blocks that provide nanometer-scale control to dramatically improve the thermal and mechanical properties of traditional polymers while offering easy incorporation using existing manufacturing protocols. These compounds have an average diameter of just 1.5 nanometers, or billionth of a meter. POSS® nanomaterials can be used both as direct replacements for hydrocarbon based materials or as low-density performance additives to traditional plastics. They release no VOCs, and, thereby, produce no odor or air pollution. They are biocompatible, recyclable, non-flammable, and competitively priced with traditional polymer feedstocks. POSS® Nanostructured® materials can be readily incorporated into virtually any existing polymer system through blending, grafting or copolymerization.

POSS® nanoscopic chemical technology provides unique opportunities to create revolutionary material combinations through melding the desirable properties of ceramics and polymers at the 1 nm level. These new materials will enable the circumvention of classic material performance trade-offs by accessing new properties and exploiting the synergy between materials that only occur when the length-scale of morphology and the fundamental physics associated with a property coincide on the nanoscale. These POSS® nanobuilding-blocks were hailed by R&D magazine as one of the 100 globally most technologically significant new products for the year 2000. Hybrid Plastics was one of five finalists in Small Times Magazine's 2002 Best of Small Tech Award. In December 2005, a Presidential Determination deemed POSS® Nanotechnology to be in the strategic national interest of the United States.

####

About Hybrid Plastics
Polyhedral Oligomeric Silsesquioxane®

Ten years ago, we pioneered the development of an entirely new chemical technology for plastics. This technology bridges the property space between hydrocarbon-based plastics and ceramics. It imparts new or improved properties to materials through the controlled reinforcement of polymer chains at the molecular level (nanoscale). This technology is leading the way to the next generation of plastics.

The products and information you find here are just the beginning. We have expertise in chemical deritivization, custom compounding, and custom formulations. We offer full technical support for selection and cost-effective incorperation of POSS® technology into your products.

For more information, please click here

Contacts:
Carl Hagstrom
Chief Operating Officer

Hybrid Plastics, Inc.
55 W. L. Runnels Industrial Drive
Hattiesburg, MS 39401
Tel: 601.544.3466
Fax: 601.545.3103

Copyright © Hybrid Plastics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project