Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST and Partners Identify Tiny Gold Clusters as Top-Notch Catalysts

Electron micrographs showing inactive (left) and active (right) catalysts consisting of gold particles absorbed on iron oxide. The red circles indicate the presence of individual gold atoms. The yellow circles show the location of subnanometer gold clusters that can effectively catalyze the conversion of carbon monoxide to carbon dioxide. One nanometer is about half the size of a DNA molecule. (Color added for clarity)

Credit: Lehigh University Center for Advanced Materials and Nanotechnology
Electron micrographs showing inactive (left) and active (right) catalysts consisting of gold particles absorbed on iron oxide. The red circles indicate the presence of individual gold atoms. The yellow circles show the location of subnanometer gold clusters that can effectively catalyze the conversion of carbon monoxide to carbon dioxide. One nanometer is about half the size of a DNA molecule. (Color added for clarity)

Credit: Lehigh University Center for Advanced Materials and Nanotechnology

Abstract:
For most of us, gold is only valuable if we possess it in large-sized pieces. However, the "bigger is better" rule isn't the case for those interested in exploiting gold's exceptional ability to catalyze a wide variety of chemical reactions, including the oxidation of poisonous carbon monoxide (CO) into harmless carbon dioxide at room temperatures. That process, if industrialized, could potentially improve the effectiveness of catalytic converters that clean automobile exhaust and breathing devices that protect miners and firefighters. For this purpose, nanoclusters—gold atoms bound together in crystals smaller than a strand of DNA—are the size most treasured.

NIST and Partners Identify Tiny Gold Clusters as Top-Notch Catalysts

GAITHERSBURG, MD | Posted on September 8th, 2008

Using a pair of scanning transmission electron microscopy (STEM) instruments for which spherical aberration (a system fault yielding blurry images) is corrected, researchers at the National Institute of Standards and Technology (NIST), Lehigh University (Bethlehem, Pa.) and Cardiff University (Cardiff, Wales, United Kingdom) for the first time achieved state-of-the-art resolution of the active gold nanocrystals absorbed onto iron oxide surfaces. In fact, the resolution was sensitive enough to even visualize individual gold atoms.

The work is reported in the Sept. 5, 2008, issue of Science.

Surface science studies have suggested that there is a critical size range at which gold nanocrystals supported by iron oxide become highly active as catalysts for CO oxidation. However, the theory is based on research using idealized catalyst models made of gold absorbed on titanium oxide. The NIST/Lehigh/Cardiff aberration-corrected STEM imaging technique allows the researchers to study the real iron oxide catalyst systems as synthesized, identify all of the gold structures present in each sample, and then characterize which cluster sizes are most active in CO conversion.

The research team discovered that size matters a lot—samples ranged from those with little or no catalytic activity (less than 1 percent CO conversion) to others with nearly 100 percent efficiency. Their results revealed that the most active gold nanoclusters for CO conversion are bilayers approximately 0.5-0.8 nanometer in diameter (40 times smaller than the common cold virus) and containing about 10 gold atoms. This finding is consistent with the previous surface science studies done on the gold-titanium oxide models.

A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon and G.J. Hutchings. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science, Vol. 321, Issue 5894, Sept. 5, 2008.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael E. Newman

301) 975-3025

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project