Home > Press > IBM Builds World's Smallest SRAM Memory Cell
Abstract:
IBM (NYSE: IBM) and its joint development partners -- AMD, Freescale, STMicroelectronics, Toshiba and the College of Nanoscale Science and Engineering (CNSE) -- today announced the first working static random access memory (SRAM) for the 22 nanometer (nm) technology node, the world's first reported working cell built at its 300mm research facility in Albany, NY.
SRAM chips are precursors to more complex devices such as microprocessors.
The SRAM cell utilizes a conventional six-transistor design and has an area of 0.1um2, breaking the previous SRAM scaling barriers.
Researchers achieved this breakthrough at CNSE of the University at Albany, State University of New York. CNSE's Albany NanoTech is the world's most advanced university based nanoelectronics research complex. IBM and its partners do much of their leading-edge semiconductor research at CNSE.
A nanometer is one one-billionth of a meter or about 80,000 times smaller than the width of a human hair.
"We are working at the ultimate edge of what is possible -- progressing toward advanced, next-generation semiconductor technologies," said Dr. T.C. Chen, vice president of Science and Technology, IBM Research. "This new development is a critical achievement in the pursuit to continually drive miniaturization in microelectronics."
22 nm is two generations away in chip manufacturing. The next generation is 32 nm -- where IBM and its partners are in development with their leading 32 nm high-K metal gate technology that no other company or consortium can match.
Traditionally, an SRAM chip is made more dense by shrinking its basic building block, often referred to as a cell. IBM-alliance researchers optimized the SRAM cell design and circuit layout to improve stability and developed several novel fabrication processes in order to make the new SRAM cell possible. The researchers utilized high-NA immersion lithography to print the aggressive pattern dimensions and densities and fabricated the parts in its a state-of-the-art 300mm semiconductor research environment.
SRAM cell size is a key technology metric in the semiconductor industry, and this work demonstrates IBM and its partners' continued leadership in cutting-edge process technology.
Key enablers of the SRAM cell include band edge high-K metal gate stacks, transistors with less than 25 nm gate lengths, thin spacers, novel co-implants, advanced activation techniques, extremely thin silicide, and damascene copper contacts.
Additional details of this achievement will be presented at the IEEE International Electron Devices (IEDM) annual technical meeting to be held in San Francisco, CA, December 15-17, 2008.
####
For more information, please click here
Contacts:
Michael Loughran
IBM
914.945.1613
cell: 914.443.9816
Copyright © Marketwire
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||