Home > Press > Artificial Lotus Effect: Carbon nanotubes with nanoscopic paraffin coating form superhydrophobic, self-cleaning surfaces
Abstract:
Never wash your car again? Never clean your windows? These may well become reality if it becomes possible to produce the right coatings—coatings that imitate the self-cleaning effect of the lotus blossom.
A research team led by Ayyappanpillai Ajayaghosh at the National Institute for Interdisciplinary Science and Technology (Trivandrum, India) has made significant progress toward this goal. As they report in the journal Angewandte Chemie, these scientists have successfully produced a superhydrophobic, self-cleaning surface. Their success results from carbon nanotubes having a nanometer-thick paraffin coating with the help of a rigid aromatic molecule called para-phenylenevinylene.
The lotus plant has given its name to a natural self-cleaning mechanism: The extremely water-repellent (superhydrophobic) surface of its leaves causes drops of water to form spheres, which roll off the leaf, sweeping any dirt away. The lotus leaf is equipped with 3 to 10 µm "bumps" that are in turn coated with a nanoscopic water-repellent coating. The bumpy structure minimizes the area with which the water can come into contact and the water-repellent coating keeps water from getting into the valleys between the bumps. The water cannot coat the leaf and simply rolls off.
The researchers started with carbon nanotubes—long, hollow fibers made of carbon atoms in a honeycomb-like arrangement. Using a self-assembly process, they attached organic molecules to the exterior of the tubes. These molecules consist of a short backbone of aromatic six-membered carbon rings that supports several long hydrocarbon chains. The aromatic rings attach themselves firmly to the honeycomb structure of the nanotubes; the hydrocarbon chains act like a paraffin-like coating. The research team applied a dispersion of these adducts to glass, metal, and mica surfaces. Once dry, the result was a water-repellent coating with stable self-cleaning properties.
Electron microscopic images show that the coating does not have a regular structure like the leaves of the lotus, but does have comparable nanoscale roughness. Water has as much trouble coating these artificial surfaces as the lotus leaf. A tilt angle of 2° is sufficient to cause water droplets to roll off. Like the lotus, any dust is removed from the surface by the water droplets.
####
For more information, please click here
Copyright © Ayyappanpillai Ajayaghosh
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
Home
Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Iran Develops Water-Repellent Nano-Paint December 5th, 2018
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |