Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Controlled growth of truly nanoscale single crystal fullerites for device applications

Abstract:
University of Surrey researchers have found a way to make ultra-small pure carbon crystals entirely formed from the spherical carbon ‘buckyball' molecule known as C60. The method used involves mixing two liquids together, one of which contains C60, at low temperature. Lozenge shaped crystals can be quickly obtained with widths of 80 nm which is about 100,000 times smaller than the width of a pencil and much smaller than previously thought possible using this method. The electronic properties of the C60 molecules that make up the small crystals are of particular importance for developing new nanoelectronic devices such as solar cells and gas sensors. This new development may therefore allow researchers to accelerate the development of these nanotechnologies based on this simple method of making these high purity ultra-small C60 components.

Controlled growth of truly nanoscale single crystal fullerites for device applications

UK | Posted on July 14th, 2008

The work which is highlighted on the front cover of the 28th July 2008 issue of the Royal Society of Chemistry's Journal of Materials Chemistry demonstrates a fast and simple method of making C60 fullerite crystals with diameters of 80 nm. Importantly for future applications the fullerites are produced in high yield and their shape controlled through the variation of solvent, concentration and temperature. Significantly this work demonstrates that existing models of fullerite growth need re-evaluating as these models predict a minimum size of ~400 nm, well above that demonstrated by the team.

The ability to produce large quantities of fullerites raises the potential for their incorporation into devices to enhance a desired property [1]. Possible applications of fullerite rods include adsorbents, catalysts and membranes due to their relatively high surface area to volume ratio. Potential electronic devices that may benefit from such materials include n-type organic transistors due to relatively high electron mobility of C60 (~0.1 cm-2V-1s-1), optical devices, thin film organic solar cells, organic light emitting diodes and photodetectors.

Researcher Lok Cee Chong said: "The ability to control fullerite growth on a nanoscale may lead to a number of exciting applications. We are just beginning to obtain glimpses of these in my current work as I complete my PhD".

Dr Richard Curry who leads this research said: "The results of this work are of immediate significance to a wide range of technologies that use organic materials. These new nanoscale carbon materials will allow us to continue to develop enhanced devices such as sensors and solar cells to address the grand challenges facing society today".

Prof Ravi Silva, Director of the Advanced Technology Institute (ATI), said: "This is very exciting work of the type that leads to further serendipitous discoveries. Ultimately it demonstrates how the ATI and wider research carried out in the UK continues to lead the world in the development of new technologies".

The full research paper is available from the Royal Society of Chemistry Journal of Materials Chemistry website: www.rsc.org/Publishing/Journals/JM/article.asp?doi=b802417k

References cited:

[1] ‘Structural and Optoelectronic Properties of C60 Rods Obtained Via a Rapid Synthesis Route'. Yizheng Jin, Richard J. Curry, Jeremy Sloan, Ross A. Hatton, Lok Cee Chong, Nicholas Blanchard, Vlad Stolojan, Harold W. Kroto and S. Ravi P. Silva. J. Mater. Chem., 16, 3715 - 3720 (2006). http:dx.doi.org/10.1039/ B609074E

####

About University of Surrey
Surrey seeks to attract researchers of the highest calibre. Ground-breaking research at the University of Surrey is bringing direct benefits to many spheres of life - helping industry to maintain its competitive edge and creating improvements in the areas of health, medicine, space science, the environment, communications, defence and social policy.

For more information, please click here

Contacts:
Stuart Miller
Press Office
University of Surrey
Tel: 01483 689314
Mob: +44 (0) 7792 210570

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project