Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Colorful Approach to Solar Energy

An artist's representation shows how a cost-effective solar concentrator could help make existing solar panels more efficient. The dye-based luminescent solar concentrator functions without the use of tracking or cooling systems, greatly reducing the overall cost compared to other concentrator technology. Dye molecules coated on glass absorb sunlight, and re-emit it at a different wavelengths. The light is trapped and transported within the glass until it is captured by solar cells at the edge. Some light passes through the concentrator, and is absorbed by lower voltage solar cells underneath. [Note: Graphic is not to scale.]

Credit: Nicolle Rager Fuller, NSF
An artist's representation shows how a cost-effective solar concentrator could help make existing solar panels more efficient. The dye-based luminescent solar concentrator functions without the use of tracking or cooling systems, greatly reducing the overall cost compared to other concentrator technology. Dye molecules coated on glass absorb sunlight, and re-emit it at a different wavelengths. The light is trapped and transported within the glass until it is captured by solar cells at the edge. Some light passes through the concentrator, and is absorbed by lower voltage solar cells underneath. [Note: Graphic is not to scale.]

Credit: Nicolle Rager Fuller, NSF

Abstract:
View a video interview of electrical engineer Marc Baldo of MIT.(link below)

Revisiting a once-abandoned technique, engineers at the Massachusetts Institute of Technology (MIT) have successfully created a sophisticated, yet affordable, method to turn ordinary glass into a high-tech solar concentrator.

A Colorful Approach to Solar Energy

Arlington, VA | Posted on July 10th, 2008

The technology, which uses dye-coated glass to collect and channel photons otherwise lost from a solar panel's surface, could eventually enable an office building to draw energy from its tinted windows as well as its roof.

Electrical engineer Marc Baldo, his graduate students Michael Currie, Jon Mapel and Timothy Heidel, and postdoctoral associate Shalom Goffri, announced their findings in the July 11 issue of Science.

"We think this is a practical technology for reducing the cost of solar power," said Baldo.

The researchers coated glass panels with layers of two or more light-capturing dyes. The dyes absorbed incoming light and then re-emitted the energy into the glass, which served as a conduit to channel the light to solar cells along the panels' edges. The dyes can vary from bright colors to chemicals that are mostly transparent to visible light.

Because the edges of the glass panels are so thin, far less semiconductor material is needed to collect the light energy and convert that energy into electricity.

"Solar cells generate at least ten times more power when attached to the concentrator," added Baldo.

Because the starting materials are affordable, relatively easy to scale up beyond a laboratory setting, and easy to retrofit to existing solar panels, the researchers believe the technology could find its way to the marketplace within three years.

The new technology emerged in part from an NSF Nanoscale Interdisciplinary Research Team effort to transfer the capabilities of photosynthesis to solar technology.

The researchers' approach succeeded where efforts from the 1970s failed because the thin, concentrated layer of dyes on glass is more effective than the alternative--a low concentration of dyes in plastic--at channeling most of the light all the way to the panel edges. However, the current technology still needs further development to create a system that will last the 20- to 30-year lifetime necessary for a commercial product.

For additional information, see the MIT release at:web.mit.edu/newsoffice/2008/solarcells-0710.html

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $6.06 billion, we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Teresa Herbert
Massachusetts Institute of Technology
(617) 258-5403


Program Contacts
Rajinder Khosla
NSF
(703) 292-8339


Principal Investigators
Marc Baldo
Massachusetts Institute of Technology
(617) 452-5132

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View Video

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project