Home > News > Horizons For Immunotherapy
June 13th, 2008
Horizons For Immunotherapy
Abstract:
I'm given to note that progress in targeted therapies - in particular those that use nanoparticles like dendrimers to string together homing mechanisms with cell destruction payloads - is very important. All sorts of cells need killing as we get older, to prevent the damage they cause: cancer cells, senescent cells, and so forth. Targeted nanoparticle therapies will soon provide a broad and extensible technology platform to get that job done, for any cell whose biochemistry we know how to distinguish, thus lightening the load of age-related damage in our bodies.
When you stop to think about it, we already have a flexible, targeted cell destruction therapy roaming our bodies from day one: it's called the immune system. Immune cells are very much more sophisticated than the dendrimers being built in laboratories today, and are capable of destroying much more than just errant cells. Any biochemical that can be broken down within a cell is fair game, not just those biochemicals that make up our cells.
Looking ahead, we can see three paths:
* The path of nanoparticles, nanoscale targeting devices and payloads to destroy the specific cells
* The path of manipulating our immune system into destroying targeted cells and cleaning up specific biochemicals
* The merged path: artificial cells built to have a limited subset of natural immune cell functions, and set to a specific cleanup task within the body
I expect it'll be a good 20 years or so before we see the first practical applications of artificial cells in this area, though present progress suggests less complex projects will emerge more rapidly than that. For the purposes of this post, I'm more interested in what will result from work on immune therapies over the next decade, alongside the clinical application of targeted nanoparticle therapies.
Source:
mprize.org
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Life Extension/Cryonics
Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016
Multicolor super resolution imaging: A method to monitor dynamic protein binding at subsecond timescales June 19th, 2016
Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces February 27th, 2016
Lifeboat Foundation launches 3 books December 16th, 2015
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |