Home > News > Biological nanobots could repair and improve the human body, but they'll be more bio than bot
June 10th, 2008
Biological nanobots could repair and improve the human body, but they'll be more bio than bot
Abstract:
It's a seductive idea, seemingly validated by the workings of the cells of our own bodies. We're full of sophisticated nanoassemblers: delve into the inner workings of a typical cell and you'll find molecular motors that convert chemical energy into mechanical energy and membranes with active ion channels that sort molecules—two key tasks needed for basic nanoscale assembly. ATP synthase, for example, is an intricate cluster of proteins constituting a mechanism that makes adenosine triphosphate, the molecule that fuels the contraction of muscle cells and countless other cellular processes. Cell biology also exhibits software-controlled manufacturing, in the form of protein synthesis. The process starts with the ribosome, a remarkable molecular machine that can read information from a strand of messenger RNA and convert the code into a sequence of amino acids. The amino-acid sequence in turn defines the three-dimensional structure of a protein and its function. The ribosome fulfils the functions expected of an artificial assembler—proof that complex nanoassembly is possible.
Source:
spectrum.ieee.org
Related News Press |
Brain-Computer Interfaces
Taking salt out of the water equation October 7th, 2022
New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |