Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Efficiency record for solar cell broken

Abstract:
PhD Bram Hoex (29) and his TU/e colleagues have managed to increase the efficiency of an important type of solar cell from 21.9 to 23.2 percent. They will present this world record on Wednesday 14 May, at a large conference on solar energy in San Diego (USA).

Efficiency record for solar cell broken

Netherlands | Posted on May 14th, 2008

Hoex applied an ultra-thin film of aluminum oxide (circa thirty nanometers) on the front of a crystalline silicon solar cell. This film has an unprecedented high number of built-in negative charges, which ensure that the loss of energy on the surface - which is normally considerable - disappears. Of all the solar light falling onto the solar cell, 23.2 percent is now converted into electric energy. That used to be 21.9 percent.

The efficiency improvement brings us one step closer to the breakthrough of solar energy. An improvement of more than one percent may seem modest, yet it can yield millions for solar cell producers. According to Hoex' calculations the improvement can increase the yield of a production line for solar cells by five millions per year. Expectations are that the application of the ultra-thin film will cost far less.

Hoex gained his PhD on 8 May within the TU/e Department of Applied Physics. In the Plasma & Materials Processing (PMP) research group he was supervised by professor Richard van de Sanden and Erwin Kessels. The specialty of this group is the application of extremely thin layers by means of plasmas. The flimsy aluminum oxide film, developed within the PMP group, may lead to a technological innovation in the field of solar cells. A number of major manufacturers of solar cells have already showed an interest.

The research was conducted in collaboration with the German Fraunhofer Institute. Part of Hoex' work was paid for by the government, as the industrial application of this type of high-efficiency solar cell is coming considerably closer as a result.

####

For more information, please click here

Copyright © Eindhoven University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project