Home > News > Nanomotor provides linear or rotary motion
April 25th, 2008
Nanomotor provides linear or rotary motion
Abstract:
Researchers from the Spanish National Research Council, Universitat Autònoma de Barcelona, and the Catalan Institute of Nanotechnology claim to have created the first nanomotor that is moved by changes in temperature.
The carbon nanotube is capable of transporting cargo and rotating like a conventional motor, but is a million times smaller than the head of a needle. This research is said to open the door to the creation of new nano-scale devices designed to carry out mechanical tasks, which, in the future, could be applied to the fields of biomedicine or new materials.
The 'nanotransporter' consists of a carbon nanotube - a cylindrical molecule formed by carbon atoms - covered with a shorter concentric nanotube that can move back and forth or act as a rotor.
A metal cargo can be added to the shorter mobile tube, which could then transport this cargo from one end to the other of the longer tube or rotate it around its axis.
Researchers are able to control these movements by applying different temperatures at the two ends of the long nanotube. The shorter mobile tube thus moves from the warmer to the colder area in a similar manner to the way in which air moves around a heater. This is believed to be the first time a nanometre-sized motor has been created that can use changes in temperature to generate and control movements.
Source:
engineerlive.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||