Home > News > Printed oxide electronics at Oregon State University
April 22nd, 2008
Printed oxide electronics at Oregon State University
Abstract:
Oregon State University has had a comprehensive program developing printed oxide electronics and electro-optics for some years. The latest progress was revealed by Douglas A. Keszler Department of Chemistry OSUMI Oregon State University at the IDTechEx Printed Electronics Europe event in Dresden Germany this month.
Collaboration and funding comes from Hewlett Packard, Inpria Corp., DARPA, The Air Force Research Laboratory, SNNI and Oregon Nanoscience and Microtechnologies Institute.
One advantage of this technology is transparency and three of the researchers have written a book on Transparent Electronics published by Springer. The electronic properties of inorganic compound layers can be superior to those of organic layers by a factor of ten or more, though the test devices reported here usually have mobilities similar to the best organic semiconductors not yet commercialised ie a few cm2/vs. With inorganic oxide transistor semiconductors and dielectrics, the challenge lies in printing what is, in effect, pottery and the OSU approach does not follow the usual route of creating fine powders in order to do this. So called subcolloidal precursor chemistries are used.
Source:
idtechex.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |