Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Printed oxide electronics at Oregon State University

April 22nd, 2008

Printed oxide electronics at Oregon State University

Abstract:
Oregon State University has had a comprehensive program developing printed oxide electronics and electro-optics for some years. The latest progress was revealed by Douglas A. Keszler Department of Chemistry OSUMI Oregon State University at the IDTechEx Printed Electronics Europe event in Dresden Germany this month.

Collaboration and funding comes from Hewlett Packard, Inpria Corp., DARPA, The Air Force Research Laboratory, SNNI and Oregon Nanoscience and Microtechnologies Institute.

One advantage of this technology is transparency and three of the researchers have written a book on Transparent Electronics published by Springer. The electronic properties of inorganic compound layers can be superior to those of organic layers by a factor of ten or more, though the test devices reported here usually have mobilities similar to the best organic semiconductors not yet commercialised ie a few cm2/vs. With inorganic oxide transistor semiconductors and dielectrics, the challenge lies in printing what is, in effect, pottery and the OSU approach does not follow the usual route of creating fine powders in order to do this. So called subcolloidal precursor chemistries are used.

Source:
idtechex.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project