Home > Press > Toward the next generation of high-efficiency plastic solar cells
Abstract:
Journal of the American Chemical Society
Researchers in the United States and Austria report an advance toward the next generation of plastic solar cells, which are widely heralded as a low cost, environmentally-friendly alternative to inorganic solar cells for meeting rising energy demands. Their study is scheduled for the March 19 issue of ACS' Journal of the American Chemical Society, a weekly publication.
Alan J. Heeger and colleagues point out that plastic solar cells, fabricated from bulk heterojunction materials comprising semiconducting polymers and fullerenes, have already demonstrated promising performance. However, researchers do not understand how to control the nano-scale morphology and are looking for ways to optimize the solar cell performance for practical use. Heeger, co-recipient of the Nobel Prize in Chemistry in 2000 for his pioneering research on conducting polymers, is widely recognized for his ongoing efforts to improve solar cell efficiencies.
In the new study, Heeger and colleagues found that adding a class of chemicals called alkanedithiols as processing additives improves both the morphology and the solar cell performance.They showed that by utilizing alkanedithiols as processing additives, the efficiency of the plastic solar cells increased from 3.4 percent to 5.1 percent, among the highest efficiencies achieved to date for this type of solar cell. "These data provide a better understanding of correlation between the nano-scale morphology of the bulk heterojunction film and the solar cell performance," the report states.
####
For more information, please click here
Contacts:
Alan J. Heeger, Ph.D.
University of California at Santa Barbara
Santa Barbara, California 93106
Phone: 805-983-3184
Fax: 805-893-4755
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |