Home > News > Nanoparticles kills germs, not cells
March 7th, 2008
Nanoparticles kills germs, not cells
Abstract:
Antibiotics and chemotherapy - two common medical treatments - flood our bodies with toxic pharmaceutical compounds in the hope that they will find and destroy the invasive micro organisms or tumour cells that are making us feel unwell. Unfortunately, the process is not targeted and can cause unintended side-effects in healthy body tissue.
A new means to target disease-causing micro-organisms without damaging the surrounding healthy body tissue has been demonstrated by a team of researchers in the Faculty of Science. This research focuses on the parasitic organism Toxoplasma gondii. Infection with this organism can cause pregnant women to abort, and transmission of the parasite to the foetus can cause mental retardation, blindness, seizures and death. Toxo infections can also have serious consequences for individuals with AIDS or tuberculosis or patients who have recently received organ transplants.
PhD student Dakrong Pissuwan and colleagues in the Faculty of Science have developed functionalised nanoparticles that can target disease-causing micro-organisms specifically. Pissuwan is working with her supervisors Professor Michael Cortie, Director of the Institute for Nanotechnology, and Dr Stella Valenzuela from Department of Medical and Molecular Bioscience in collaboration with Dr Catherine Miller from the Institute of Biological and Infectious Diseases.
Source:
sciencealert.com.au
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |