Home > News > Unique nanotube composites constructed for organic solar cells
February 16th, 2008
Unique nanotube composites constructed for organic solar cells
Abstract:
Harvesting energy directly from the abundant resource of solar radiation through the use of solar cells is increasingly becoming a major component of future global energy production. Other renewable energy sources, like wind and hydroelectric power, can require large scale infrastructure. Solar energy, on the other hand, only needs solar cells and sunshine. Technologically feasible solutions are available today for solar electricity generation. They are predominantly based on the use of silicon conversion cells. The most efficient cells, however, use relatively expensive high-quality single-crystal or amorphous silicon wafers. Unless there are major breakthroughs, current silicon-based thin-film technologies may be reaching their limit in terms of their ratio of cost to efficiency.
Organic photovoltaics (OPVs) are made of polymers and have the advantage that they can be painted on a surface, such as on the outside walls of a building or on rooftops. Accordingly, there is a great deal of interest in putting them to use in large-scale applications. Compared with existing technologies, OPVs promise moderate power conversion efficiencies. By the same token, they have the very attractive feature that they can be made by highly scalable, high-speed coating and printing processes such as spray painting and inkjet printing to cover large areas on flexible plastic substrates. They provide a low-cost alternative for the future.
Source:
spie.org
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |