Home > News > Iranian researchers succeed in creating the most sustainable catalyst for Reforming Methane and Carbon Dioxide synthetically
January 29th, 2008
Abstract:
According to the research reporter of ISNA, the researchers in the Iranian university of Science and Industry managed to synthetically produce a durable catalyst for the process of reforming Methane and Carbon Dioxide.
Dr Mehran, a graduate from the chemistry department of the Science and Industry University said: This catalyst is used in petrochemical industries to transform the natural gas into synthetic gas (mixture of Hydrogen and Carbon Monoxide). The reforming process is normally done by using vapour bath or partial oxidation.
This member of the scientific board of Kashan University said: The main difficulty in the reforming process is that the catalysts becomes inactive very quickly; but in the new material, the base for the catalysts is Zirconium Dioxide instead of Nickel which is produced by using the nanotechnology synthetically.
He added: The conventional catalysts become inactive after five hours but the synthetic ones can last more than 1550 hours, which has been tested. There has not been such sustainability in such catalysts up to now.
Source:
payvand.com
| Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||