Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Iranian researchers succeed in creating the most sustainable catalyst for Reforming Methane and Carbon Dioxide synthetically

January 29th, 2008

Iranian researchers succeed in creating the most sustainable catalyst for Reforming Methane and Carbon Dioxide synthetically

Abstract:
According to the research reporter of ISNA, the researchers in the Iranian university of Science and Industry managed to synthetically produce a durable catalyst for the process of reforming Methane and Carbon Dioxide.



Dr Mehran, a graduate from the chemistry department of the Science and Industry University said: This catalyst is used in petrochemical industries to transform the natural gas into synthetic gas (mixture of Hydrogen and Carbon Monoxide). The reforming process is normally done by using vapour bath or partial oxidation.

This member of the scientific board of Kashan University said: The main difficulty in the reforming process is that the catalysts becomes inactive very quickly; but in the new material, the base for the catalysts is Zirconium Dioxide instead of Nickel which is produced by using the nanotechnology synthetically.

He added: The conventional catalysts become inactive after five hours but the synthetic ones can last more than 1550 hours, which has been tested. There has not been such sustainability in such catalysts up to now.

Source:
payvand.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project