Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Applied Materials Takes CMP Process Control to 45nm and Beyond With FullVision Endpoint System

The Applied FullVision CMP endpoint system is a major advancement over single wavelength endpoint technologies, offering twice the measurement accuracy with 50% higher reliability for dielectric applications, including oxide, STI and poly CMP. (Photo: Business Wire)
The Applied FullVision CMP endpoint system is a major advancement over single wavelength endpoint technologies, offering twice the measurement accuracy with 50% higher reliability for dielectric applications, including oxide, STI and poly CMP. (Photo: Business Wire)

Abstract:
Applied Materials, Inc. today announced its new Applied FullVision™ system that enables real-time control of dielectric CMP1 processes to the 45 nanometer (nm) device node and beyond. The FullVision system couples Applied's patented window-in-pad technology with multiple-wavelength spectroscopy to deliver advanced in situ endpoint capability for a variety of dielectric materials, including oxide, STI2, and poly CMP applications. The system demonstrates high repeatability across all applications with less than 150 angstrom, 3-sigma endpoint accuracy on patterned wafers. A major advance over single wavelength endpoint technologies, the FullVision system offers improved measurement accuracy with 50% higher reliability for dielectric applications.

Applied Materials Takes CMP Process Control to 45nm and Beyond With FullVision Endpoint System

SANTA CLARA, CA | Posted on November 29th, 2007

"CMP endpoint technology was pioneered by Applied Materials and is key to delivering benchmark CMP performance," said Dr. Hichem M'Saad, vice president and general manager of Applied Materials' Dielectric Systems and CMP Business Group. "As films become thinner, CMP becomes increasingly difficult, requiring much more precise wafer-to-wafer process control to achieve acceptable yields. Using broadband spectral analysis, FullVision technology monitors individual polishing zones across the wafer to provide twice the accuracy and repeatability of competitive systems on a wide variety of process steps - without compromising throughput. These are vital requirements for advanced device manufacturing."

The FullVision system has already been adopted by major memory customers on their Applied Reflexion® LK CMP systems in high volume manufacturing. For these customers, the system has enabled higher CMP yield by significantly reducing wafer scrap caused by drifts in consumable sets and incoming wafer profile variations.

Applied Materials leads the industry in CMP technology — with an installed base of more than 900 300mm CMP systems worldwide — and in providing advanced in situ metrology for ensuring best-of-breed planarization performance. See http://appliedmaterials.com/products/reflexion_lk_cmp_4.html for more information on the Applied FullVision endpoint system.

1 CMP=chemical mechanical planarization

2 STI=shallow trench isolation

####

About Applied Materials, Inc.
Applied Materials, Inc. (Nasdaq:AMAT) is the global leader in Nanomanufacturing Technology™ solutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panel displays, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply Nanomanufacturing Technology to improve the way people live.

For more information, please click here

Contacts:
Applied Materials, Inc.
Betty Newboe
408-563-0647 (editorial/media)
Randy Bane
408-986-7977 (financial community)

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project