Home > News > Nanotechnological magnets will bring smaller and more powerful hard disks
November 22nd, 2007
Nanotechnological magnets will bring smaller and more powerful hard disks
Abstract:
Magnetic materials, also known as magnets, have a wide range of applications in daily life. They are part of the core of electric engines, from those used in cars to CD systems. Computers´ hard disks are made of a magnetic material, very useful in medicine for imagenology systems, as a contrast element in nuclear magnetic resonance measurements and computerized axial tomographs.
The Institute of Materials and Reagents (IMRE) of the Universty of Havana, with the contribution of the Technical University of Vienna and the Federal University of Rio Grande do Sul in Brazil are carrying out a micro-structural study of two types of magnetic materials: Magnetically hard materials with submicronic micro-structure and nano-particulate systems with supersoft magnetic or superparamagnetic response.
Source:
nanowerk.com
Related News Press |
Memory Technology
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |