Home > News > Growing Tiny Carbon Nanotube Wires to Connect Computer Chips of the Future
November 21st, 2007
Growing Tiny Carbon Nanotube Wires to Connect Computer Chips of the Future
Abstract:
Computers and electronic devices of the future will utilise technologies not currently available. An example of such a technology is the use of carbon nanotubes as interconnects for computer chips. This is now a step closer to reality with some new work from nanotechnology researchers within the Materials Ireland Polymer Research Centre at Trinity College Dublin.
Previous work to develop such junction structure nanotubes used various different methods but this study embraced chemical vapour deposition as it allows in situ patterning of these structures. The researchers, Rory W. Leahy, Emer Lahiff, Andrew I. Minett and Werner J. Blau used a simple method of growing controllable densities of interconnect type multiwall nanotubes with high proportions of Y-junction and multiple junction nanotubes across etched patterns, using a simple catalyst preparation.
Source:
azonano.com
Related News Press |
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |