Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Understanding high-k dielectrics easier, thanks to new model

October 17th, 2007

Understanding high-k dielectrics easier, thanks to new model

Abstract:
Research being carried out at the London Centre for Nanotechnology has revealed a theoretical model which may provide a better understanding of the dielectric layer. The new model predicts flaws and defects in a visual way which might help researchers hone in on just the right materials for future semiconductors. These could significantly decrease wasted power and heat.


The dielectric layer is a very thin layer of insulating material which, up until very recently, has been Silicon Dioxide (SiO2). It provides a necessary electrical barrier which allows transistors to function, but as features get smaller that barrier is becoming less and less efficient. Alternate materials are needed because at the current thickness of only five atomic layers (5 atoms high), it just won't cut it any longer. Researchers are looking for what's called a "high-k" dielectric, or something that has a high dielectric constant. This high-k solution will provide the necessary barrier to keep Moore's Law trucking along for quite some time.

Source:
tgdaily.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project