Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Understanding high-k dielectrics easier, thanks to new model

October 17th, 2007

Understanding high-k dielectrics easier, thanks to new model

Abstract:
Research being carried out at the London Centre for Nanotechnology has revealed a theoretical model which may provide a better understanding of the dielectric layer. The new model predicts flaws and defects in a visual way which might help researchers hone in on just the right materials for future semiconductors. These could significantly decrease wasted power and heat.


The dielectric layer is a very thin layer of insulating material which, up until very recently, has been Silicon Dioxide (SiO2). It provides a necessary electrical barrier which allows transistors to function, but as features get smaller that barrier is becoming less and less efficient. Alternate materials are needed because at the current thickness of only five atomic layers (5 atoms high), it just won't cut it any longer. Researchers are looking for what's called a "high-k" dielectric, or something that has a high dielectric constant. This high-k solution will provide the necessary barrier to keep Moore's Law trucking along for quite some time.

Source:
tgdaily.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project