Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers measure carbon nanotube interaction

An artist's representation of an amine functional group attached to an AFM tip approaching a carbon nanotube surface in toluene solution. Translucent blue shape on the nanotube represents the polarization charge forming on the nanotube as the result of the interaction with the approaching molecule. Chemical force microscopy measures the tiny forces generated by this single functional group interaction. (Illustration by Scott Dougherty, LLNL)
An artist's representation of an amine functional group attached to an AFM tip approaching a carbon nanotube surface in toluene solution. Translucent blue shape on the nanotube represents the polarization charge forming on the nanotube as the result of the interaction with the approaching molecule. Chemical force microscopy measures the tiny forces generated by this single functional group interaction. (Illustration by Scott Dougherty, LLNL)

Abstract:
Carbon nanotubes have been employed for a variety of uses including composite materials, biosensors, nano-electronic circuits and membranes.

Researchers measure carbon nanotube interaction

LIVERMORE, CA | Posted on October 16th, 2007

While they have proven useful for these purposes, no one really knows much about what's going on at the molecular level. For example, how do nanotubes and chemical functional groups interact with each other on the atomic scale? Answering this question could lead to improvements in future nano devices.

In a quest to find the answer, researchers for the first time have been able to measure a specific interaction for a single functional group with carbon nanotubes using chemical force microscopy - a nanoscale technique that measures interaction forces using tiny spring-like sensors. Functional groups are the smallest specific group of atoms within a molecule that determine the characteristic chemical reactions of that molecule.

A recent report by a team of Lawrence Livermore National Laboratory researchers and colleagues found that the interaction strength does not follow conventional trends of increasing polarity or repelling water. Instead, it depends on the intricate electronic interactions between the nanotube and the functional group.

"This work pushes chemical force microscopy into a new territory," said Aleksandr Noy, lead author of the paper that appears in the Oct. 14 online issue of the journal, Nature Nanotechnology.

Understanding the interactions between carbon nanotubes (CNTs) and individual chemical functional groups is necessary for the engineering of future generations of sensors and nano devices that will rely on single-molecule coupling between components. Carbon nanotubes are extremely small, which makes it particularly difficult to measure the adhesion force of an individual molecule at the carbon nanotube surface. In the past, researchers had to rely on modeling, indirect measurements and large microscale tests.

But the Livermore team went a step further and smaller to get a more exact measurement. The scientists were able to achieve a true single function group interaction by reducing the probe-nanotube contact area to about 1.3 nanometers (one million nanometers equals one millimeter).

Adhesion force graphs showed that the interaction forces vary significantly from one functionality to the next. To understand these measurements, researchers collaborated with a team of computational chemists who performed ab initio simulations of the interactions of functional groups with the sidewall of a zig-zag carbon nanotube. Calculations showed that there was a strong dependence of the interaction strength on the electronic structure of the interacting molecule/CNT system. To the researchers delight, the calculated interaction forces provided an exact match to the experimental results.

"This is the first time we were able to make a direct comparison between an experimental measurement of an interaction and an ab initio calculation for a real-world materials system," Noy said. "In the past, there has always been a gap between what we could measure in an experiment and what the computational methods could do. It is exciting to be able to bridge that gap."

This research opens up a new capability for nanoscale materials science. The ability to measure interactions on a single functional group level could eliminate much of the guess work that goes into the design of new nanocomposite materials, nanosensors, or molecular assemblies, which in turn could help in building better and stronger materials, and more sensitive devices and sensors in the future.

Other Livermore researchers include, Raymond Friddle, Melburne LeMieux and Alexander Artyukhin.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M.Stark
Phone:(925)422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project