Home > Press > PET Scanning Tracks Injected Quantum Dots
Abstract:
A wide variety of experiments have shown that nanoscale quantum dots have the potential to detect early-stage cancer and even monitor the progress of anticancer therapies. But a new study from a team of investigators at the Center for Cancer Nanotechnology Excellence Focused (CCNE) on Therapy Response suggests that quantum dots as they currently exist may not remain in the body long enough to prove useful in human clinical applications.
Sanjiv Gambhir, M.D., Ph.D., principal investigator of the Stanford University-based CCNE, along with fellow CCNE investigators Anna Wu, Ph.D., and Xiaoyuan Chen, Ph.D., used positron emission tomography (PET) to track the fate of radioactively labeled quantum dots labeled after injection into mice. After injection, PET imaging revealed that as much as a half of the quantum dots were removed from the blood stream by the liver and spleen and that the entire dose was removed from circulation within 10 minutes of injection. Quantum dots coated with poly(ethylene glycol) (PEG), a biocompatible polymer used to extend the circulating lifetime of many types of nanoparticles, fared little better. The size of the quantum dots also had little effect on blood clearance rates.
The researchers note that while this study raises important biodistribution issues that must be solved if quantum dots are to become a useful clinical tool, it also demonstrates that PET monitoring of radiolabelled nanoparticles can provide rapid, quantitative data on nanoparticle biodistribution. In addition, the real-time nature of PET monitoring allowed the investigators to identify differences in pharmacokinetic properties between PEG-coated and native quantum dots. These differences would not have been spotted using traditional pharmacokinetic assays.
This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper, "MicroPET-based biodistribution of quantum dots in living mice." Investigators from the University of California, Los Angeles, School of Medicine also participated in this study. An abstract of this paper is available through PubMed.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||